Половые клетки и оплодотворение. Механизм зачатия ребенка. Овуляция, процесс оплодотворения Ранние этапы развития зародыша. Бластула. Гаструла

Оплодотворение, исходный момент возникновения новой генетической индивидуальности, представляет собой процесс соединения женской и мужской гамет.

В результате оплодотворения возникает одноклеточный зародыш с диплоидным набором хромосом и активируется цепь событий, лежащих в основе развития организма.

Биологическое значение оплодотворения огромно: будучи предпосылкой развития новой индивидуальности, оно вместе с тем является условием продолжения жизни и эволюции вида.

Следует подчеркнуть, что оплодотворение представляет собой не одномоментный акт, но именно процесс, занимающий более или менее продолжительный отрезок времени. Это многоступенчатый процесс, в котором различаются следующие этапы: привлечение сперматозоида яйцом, связывание гамет и, наконец, слияние мужских и женских половых клеток. В научной литературе события, связанные со сближением гамет иногда называют осеменением различая наружное и внутреннее осеменение, в зависимости от того, выводятся мужские половые клетки в окружающую среду или в половые органы женской особи. Наружное осеменение характерно для животных, обитающих в водной среде. Внутреннее осеменение присуще главным образом наземным животным, хотя оно достаточно часто встречается и у обитателей водной среды. Осеменение может быть свободным при котором все области ооцита доступны спермиям, но может быть и ограниченным, когда на поверхности яйцеклетки имеется плотная оболочка с микропиле. При внутреннем осеменении у ряда животных мужские гаметы передаются самкам в виде сперматофоров , особых капсул, содержащих сперматозоиды. Сперматофоры сначала выводятся в окружающую среду, а затем тем или иным способом переносятся в половые пути самки.

Соединение гамет предопределяет возможность кариогамии , или слияния ядер. Благодаря кариогамии происходит объединение отцовских и материнских хромосом, ведущее к образованию генома новой особи. В результате слияния гамет возникает диплоидная зигота, восстанавливается способность к репликации ДНК и начинается подготовка к делениям дробления. Механизмы активации яйца к развитию относительно автономны. Их включение может быть осуществлено и помимо оплодотворения, что происходит, например, при естественном или искусственном девственном развитии, или партеногенезе .

Интерес к проблеме оплодотворения выходит далеко за рамки собственно эмбриологии. Слияние гамет - плодотворно используемая модель для изучения тонких молекулярных и клеточных механизмов специфического взаимодействия клеточных мембран; для изучения молекулярных основ активации метаболизма и пролиферации соматических клеток. Общебиологический интерес представляет и то, что оплодотворение являет собой яркий и, может быть, уникальный пример полного обращения клеточной дифференциации. Действительно, высокоспециализированные половые клетки не способны к самовоспроизведению. Они гаплоидны и не могут делиться. Однако после слияния они превращаются в тотипотентную клетку, которая служит источником формирования всех клеточных типов, присущих данному организму.

История открытия оплодотворения теряется в глубине веков. Во всяком случае, в XVIII столетии итальянский естествоиспытатель аббат Лаццаро Спалланцани (1729-1799) экспериментально доказал, что оплодотворение зависит от наличия спермы, и впервые осуществил искусственное оплодотворение яиц лягушки, смешивая их со спермой, полученной из семенников. Тем не менее смысл происходящих при этом событий оставался неясным практически до последней четверти XIX века, когда Оскар Гертвиг (1849-1922) в конце 1870-х годов, изучая оплодотворение у морских ежей, пришел к заключению, что сущность этого процесса состоит в слиянии ядер половых клеток. Вместе с работами бельгийца Эдуарда ван Бенедена (1883, аскарида), немецкого ученого Теодора Бовери (1887, аскарида), швейцарского зоолога Германа Фоля (1887, морская звезда) исследования О. Гертвига заложили основу современных представлений об оплодотворении. Следует подчеркнуть, что именно эти работы послужили веским основанием для предположения о том, что ядро является носителем наследственных свойств. Именно Т. Бовери (1862-1915) в серии блестящих цитологических исследований обосновал в конце 1880-х годов теорию индивидуальности хромосом и создал основу цитогенетики.

Вскоре после выяснения сущности оплодотворения исследователи сосредоточили внимание на механизмах, лежащих в основе этого процесса. Эта область исследований сохраняет актуальность и в наше время. Пальма первенства в построении теории оплодотворения принадлежит американскому исследователю Франку Лилли (1862-1915). Изучая свойства «яичной воды», т. е. морской воды, в которой некоторое время находились неоплодотворенные яйца морского ежа Arbacia или полихеты Nereis, Лилли обнаружил, что из яиц выделяется вещество, которое обладает способностью склеивать спермин в комки. Наблюдаемая агглютинация оказалась видоспецифичной, и Лилли назвал фактор агглютинации, выделяемый неоплодотворенным яйцом, веществом оплодотворения, или фертилизином (от англ. fertilization - оплодотворение). Суть выдвинутой Лилли теории оплодотворения состоит в признании того, что в периферической области яйца находится фертилизин, который имеет сродство к поверхностным рецепторам спермия (антифертилизин спермия). Благодаря этому сродству фертилизин связывает, согласно Лилли, спермии. Однако, чтобы претендовать на универсальность и объяснить не только механизм соединения гамет, но и причины агглютинации спермиев, возможность предотвращения полиспермии, высокую специфичность процесса оплодотворения и т д., теория фертилизина нуждалась в многочисленных допущениях, под гнетом которых она в конце концов и угасла.

Уже в ходе ранних исследований оплодотворения возникло представление о гамонах - веществах, которые обеспечивают активацию или блокирование отдельных этапов оплодотворения. В соответствии с их происхождением различали гиногамоны, выделяемые яйцеклетками, и андрогамоны, вырабатываемые мужскими половыми клетками. Так, полагали, что гиногамон 1, диффундируя из яйца, активирует движение сперматозоида, преодолевая действие андрогамона 1, который ингибирует движение сперматозоида. Гиногамон 2 - синоним фертилизина, а андрогамон 2 - антифертилизина спермия.

В пятидесятые годы XX столетия идея о взаимодействии фертилизина с антифертилизином трансформировалась в гипотезу специфического фагоцитоза. Согласно этой концепции, наличие на поверхности яйца и спермия взаимодействующих молекул обеспечивает комплементарную реакцию по принципу застежки «молнии», благодаря которой спермий оказывается поглощенным яйцом.

Несмотря на известную умозрительность, эти и многие другие подобные гипотезы о механизмах взаимодействия сперматозоидов и яиц сыграли свою положительную роль, обнаружив, во-первых, существование целого семейства специфических молекул на поверхности взаимодействующих гамет и, во-вторых, положив начало планомерным исследованиям природы этих молекул.

Вторая половина прошлого столетия - период расцвета ультраструктурных и молекулярно-биологических исследований, которые выявили большое разнообразие конкретных форм клеточного взаимодействия при оплодотворении. Стало ясно, что универсальная теория оплодотворения, если и может существовать, то только как свод некоторых самых общих принципов организации этого процесса.

Конкретные механизмы оплодотворения зависят от множества факторов. Достаточно сказать о своеобразии оплодотворения у животных с наружным и внутренним осеменением. Очевидно, что определенные различия процесса оплодотворения обусловлены и тем, что у разных животных проникновение спермия в яйцо происходит на разных этапах оогенеза. У многих аннелид, моллюсков, нематод и ракообразных сперматозоид проникает в ооциты первого порядка на стадии профазы. У других кольчатых червей, моллюсков и у насекомых - на стадии метафазы первичного ооцита. Для многих позвоночных характерно осеменение на стадии метафазы вторичного ооцита. У некоторых кишечнополостных и у морских ежей оплодотворение происходит на стадии зрелого яйца уже после завершения делений созревания и выделения направительных, или редукционных телец. Наконец, нельзя не вспомнить и разнообразие типов сперматозоидов, среди которых имеются жгутиковые формы и спермин без жгутиков (например, амебоидные спермин нематод), с акросомой и без нее, имеющие акросомную нить и лишенные ее. Естественно, что в каждом таком случае конкретные механизмы, обеспечивающие тонкое взаимодействие между половыми клетками, различаются.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Откопал старый текстик у себя в закромах, решил опубликовать здесь. Не знаю, насколько интересен этот вопрос моей аудитории, но то, что он интересен подавляющему большинству моих друзей и знакомых - это точно. Причем, как оказалось, не просто интересен, а еще и мало понятен. Видимо, в силу того, что с половым воспитанием в нашей стране полный ах.

Зачатие ребенка

Надеюсь, никому не надо объяснять, что непорочного зачатия все же не существует. Зачатию ребенка предшествует половой акт (кстати, по-латыни он называется коитус – coitus). Из-за особенностей строения женских половых путей сперма попадает большей частью в задний свод влагалища (условно можно сказать «ближе к позвоночнику»), где в это время ее уже поджидает так называемая «слизистая пробка» – сгусток слизи, «принимающий» в себя сперму и втягивающийся с нею обратно в матку. Эта пробка выделяется в момент возбуждения женщины, которое сопровождается сокращениями мускулатуры матки и открытием наружного зева ее шейки. Здесь хочу отметить одну занимательную вещь – вы можете сами определить момент появления пробки из шейки матки. Думаю, многие замечали, что во время полового акта зачастую из влагалища женщины доносятся, извините за выражение, «пердящие» звуки. Дамы, бывает, этого смущаются, а зря. Ведь именно такие звуки и говорят о том, что слизистая пробка появилась и готова к приему спермы. Попутно хочу заметить, что в задний свод влагалища попадает только 2-3 мл спермы, остальная часть благополучно вытекает из влагалища.

Строение сперматозоида и яйцеклетки

Давайте немного отойдем от повествования и посмотрим, что представляют собой основные его участники – сперматозоид и яйцеклетка. Яйцеклетка – это одинарная клетка, достаточно крупная. Срок ее жизни – 24 часа с момента выхода из яичника. Сперматозоиды же – «живчики», сохраняют способность к оплодотворению несколько суток (от трех до пяти). И именно из-за таких особенностей наиболее благоприятными сроками оплодотворения являются день овуляции и несколько суток до и после. Причем необходимо еще учесть, что сперматозоиды движутся не так уж и быстро по человеческим меркам – сутки и даже более требуются им, чтобы добраться до цели. На этих принципах основан метод предохранения от беременности. Вы можете и сами определить день овуляции и рассчитать благоприятные дни для наступления беременности с помощью измерения так называемой базальной температуры – температуры в прямой кишке. Во время овуляции она на градус выше нормы. Но этот метод очень ненадежен, так как температура может повышаться из-за множества причин – стрессов, физической активности, различных заболеваний (особенно простудных).

Сперматозоид намного меньше яйцеклетки и в отличие от нее подвижен. Грубо говоря, сперматозоид – это узкоспециализированная клетка, имеющая ядро с хромосомами и жгутик, с помощью которого он передвигается. Причем скорость передвижения по нашим меркам ничтожна – 30-50 мкм/с (один микрометр – одна миллионная доля метра), однако сам сперматозоид тратит очень много энергии для того, чтобы передвигаться с такой скоростью. Как же он находит яйцеклетку? Дело в том, что яйцеклетка выделяет особые вещества, которые «привлекают» сперматозоиды, а сперматозоиды, в свою очередь, обладают хемотаксисом – способность целенаправленно двигаться в направлении «пахнущей» яйцеклетки. Попав в половые пути женщины, сперматозоиды сохраняют способность к оплодотворению в среднем 3-5 суток.

Оплодотворение яйцеклетки

Но вернемся к моменту оплодотворения яйцеклетки. После того, как слизистая пробка втянулась в матку, сперматозоиды продолжают движение уже самостоятельно.

В нормальных условиях примерно через полчаса-час сперматозоиды попадают в матку, а через полтора-два часа – в ампулу маточной трубы, где их уже поджидает яйцеклетка. Хотя нет, не поджидает – ожидания никакого не предусмотрено. Либо яйцеклетка оплодотворяется и дальше по трубам движется уже зародыш, либо неоплодотворенная яйцеклетка погибает.

Конечно, яйцеклетку находят сразу много сперматозоидов. Они внедряются в ее оболочку и своими движениями начинают раскручивать, разрыхляя ее таким образом. А оболочка у нее состоит из нескольких слоев, или зон. Поэтому сперматозоиды вынуждены еще и растворять ее специальными веществами. И ведь насколько интересно все устроено – в сперме миллионы сперматозоидов и только один достигнет в итоге цели. Остальные же просто играют роль помощников – одни гибнут в кислой среде влагалища, тем самым позволяя своим собратьям двигаться буквально по их телам вперед, а другие, раскручивая яйцеклетку и растворяя ее оболочки, помогают единственному призеру попасть внутрь. А вот кто будет тем самым призером – это решает его величество случай. Все спекуляции на тему «вы появились от самого быстрого и сильного сперматозоида» не верны, так как сперматозоиды, достигшие яйцеклетки, все одинаково сильные и быстрые. Просто ваш – самый удачливый.

Как только тот самый удачливый сперматозоид проник внутрь и оплодотворил яйцеклетку, ее оболочка становится невосприимчива к попыткам остальных попасть внутрь. Джекпот выигран, остальные остались не у дел.

Образование и развитие зародыша

После проникновения сперматозоида внутрь яйцеклетки их ядра сливаются и образуют первую клетку будущего организма – зиготу. При этом материнские хромосомы и отцовские образуют полный генный набор будущего организма. В среднем через сутки зигота начинает делиться, двигаясь одновременно по маточной трубе к полости матки. Сначала зигота делится на 2 клетки, потом на 4, затем на 8 и так далее. Ниже на фото как раз и показаны эти стадии. В итоге из одной клетки получаются целые триллионы!

Первые 3-5 суток зародыш получает питание из тех веществ, которые содержались в самой яйцеклетке. Далее она уже имплантируется в матку (в ее внутренний слой – эндометрий) и образует плаценту, питающую будущего ребенка вплоть до момента рождения. Соответственно, примерно через две недели при отсутствии менструации женщина может предположить, что беременна.

Надо отметить, что иногда при овуляции в маточные трубы выходят две яйцеклетки, каждая из которых может оплодотвориться отдельным сперматозоидом. В таком случае получаются разнояйцевые близнецы (яйцеклетку еще называют просто «яйцом», «ovo» по-гречески. Отсюда и пошло слово «овуляция»). Однояйцевые же получаются, соответственно, из одной яйцеклетки, но разделенной в момент первого деления на две самостоятельных зиготы. Поэтому и получается, что однояйцевые близнецы – копия друг друга, а разнояйцевые – нет.

В мире хромосом и генов

Как мы уже выяснили, при зачатии случайным образом закладываются все передающиеся по наследству характеристики ребенка – физические данные, пол, группа крови, цвет глаз, волос и так далее. Причем ребенку генов достается поровну – по 23 хромосомы от отца и матери (гены располагаются в хромосомах). Развитие ребенка во время беременности, в младенчестве, детстве и далее во многом будет подчинено именно этой программе.

Однако только лишь одна пара хромосом определяет пол ребенка. Мужчины имеют пару ХУ, а женщины – ХХ. Это последняя, 23 пара хромосом. Соответственно, выходит, что одна Х-хромосома у будущего ребенка обязательно от матери. Вторая же хромосома зависит от того, какой сперматозоид первым достиг яйцеклетки. Если он нес в себе Х-хромосому – будет девочка (ХХ). Если же У – будет мальчик (ХУ). Причем интересно, что сперматозоиды, несущие Х-хромосому, передвигаются медленнее несущих У-хромосому, но они более живучие. Поэтому если оплодотворение произошло через двое-трое суток после полового акта, то высока вероятность рождения мальчика. Если же позднее – то девочки. На этом основан метод планирования пола будущего ребенка.

Вот вроде и все. Если что-то не понятно или появились вопросы – пишите в комментах.

Как известно, после достижения половой зрелости у каждой девушки, а затем женщины один раз в месяц происходит . Это довольно-таки сложный физиологический процесс, в ходе которого зрелая яйцеклетка выходит из яичника в маточную трубу. Именно в ней и происходит оплодотворение.

Особенности овуляции

Слияние сперматозоидов с яйцеклеткой происходит в течение двенадцати часов после того, как она выходит в маточную трубу. Время овуляции рассчитать несложно, и одним из самых достоверных методов его определения является , то есть температуры в прямой кишке. Эта процедура должна ежедневно проводиться в течение нескольких месяцев. Температура измеряется в одно и то же время, рано утром, не вставая в постели, с помощи самого обычного градусника.

Если занести данные в график, можно увидеть кривую созревания своей яйцеклетки. Перед началом менструации температура максимальное снижается, а момент овуляции наступает либо в последний день пониженной температуры, либо в первый день ее повышения. Самым благоприятным днем для оплодотворения яйцеклетки является тот, когда наступает овуляция, либо несколько дней до ее начала.

Это объясняется тем, что сперматозоиды, которые попали в полость маточной трубы, остаются жизнеспособными в течение нескольких суток. Зная день наступления овуляции, можно не только зачать ребенка, но также попробовать . Для этого существуют различные и календари зачатия.

Механизм оплодотворения

Оплодотворение яйцеклетки является длительным и сложным механизмом, во время которого происходит соединение мужской и женской половых клеток. Семенная жидкость, которая во время полового акта попадает в женское влагалище, содержит примерно от 60 до 150 млн. зрелых сперматозоидов. За счет того непрерывного сокращения матки, семенная жидкость ей активно захватывается, в связи с чем подвижные сперматозоиды продвигаются в полость матки в течение нескольких минут, а затем достигают дальних отделов маточной трубы, где располагается яйцеклетка.

Несмотря на то, что мужских половых клеток много, они встречают множество препятствий на своем пути (кислая среда влагалища, слизистое содержимое канала шейки матки и так далее), и только один самый быстрый сперматозоид сможет оплодотворить яйцеклетку. Правда, многочисленными исследованиями доказано, что в яйцеклетку могут проникнуть и несколько сперматозоидов, но ядро с наследственной информацией яйцеклетки может соединиться с ядром только одного сперматозоида, в результате чего образуется только один эмбрион. Конечно, бывают случаи, когда в процессе оплодотворения получается несколько эмбрионов, и в итоге рождаются близнецы.

Сперматозоид проходит через прочные оболочки женской клетки благодаря растворению ферментами, которые содержатся в акросомной капсуле его головки. Вступая с контакт с яйцеклеткой, капсула разрывается, и из нее к оболочкам начинает прикрепляться акросомная нить и выделяться вещества, которые разрушают оболочку яйцеклетки. Растворив небольшой участок, акросомная нить проникает вглубь яйцеклетки и плотно соединиться с ее внутренним содержимым. Потом ядро и внутреннее содержимое головки сперматозоида всасывается внутрь женской половой клетки.

Изменения в яйцеклетке

Полное проникновение сперматозоида в женскую половую клетку запускает процесс существенного изменения физиологических процессов в ней. Оболочки яйцеклетки становятся намного более проницаемыми, что очень важно для активного накопления питательных веществ, при помощи которых станет развиваться эмбрион. Начинают более активно вырабатываться белки, кальций и углеводы, впитывается максимальное количество кальция и фосфора - в общем, ведется подготовка к развитию плода.

Наиболее важные и значительные для будущего ребенка события происходят в течение примерно двенадцати часов после проникновения сперматозоида в яйцеклетку. В это время ядра мужской и женской клеток, несущие в себе всю наследственную информацию, соединяются. Образуется новая клетка с полным набором хромосом, из которой потом разовьется эмбрион и в итоге родится новый человек.

Сложный процесс, при котором сперматозоид взаимодействует с гомологичным ооцитом, в результате чего образуется новый организм. Соединение двух гамет у млекопитающих начинается с их перемещения по репродуктивным трактам мужского и женского организмов, продолжающегося до тех пор, пока они не встретятся в женских репродуктивных путях. Последующее взаимодействие между двумя гаметами происходит в несколько этапов, завершающихся их слиянием с образованием зиготы:

Связывание сперматозоида с оболочкой ооцита;
активация ооцита;
образование мужского и женского пронуклеусов;
инициация деления клетки и раннего эмбрионального развития.

В последние 20 лет были предприняты значительные усилия , направленные на идентификацию молекул и сигнальных путей, имеющих отношение к взаимодействию гамет. Взаимодействие и информационный обмен между двумя совершенно чужими клетками осуществляются при помощи множества биологических, физиологических и генетических факторов. Большинство наших знаний о взаимодействии половых клеток получено у животных, базируются они преимущественно на данных, полученных на мышиной модели. Хотя многие молекулы, вовлеченные в процесс оплодотворения, идентифицированные на мышиной модели, сохранились в процессе эволюции и у человека, вопрос о возможности экстраполяции этих данных на человека остается спорным.

Основным экспериментальным методом , используемым для изучения клеточных и молекулярных механизмов взаимодействия сперматозоида и ооцита, служит ЭКО. Теперь, когда ЭКО стало рутинной процедурой (как в отношении лабораторных животных, так и для людей), были выявлены многие ключевые факторы, необходимые для оплодотворения.

В дальнейших статьях на нашем сайте суммированы современные знания о молекулярных и клеточных механизмах оплодотворения , сфокусировано внимание на сегодняшнем понимании клеточных биологических процессов и молекулярных событий, имеющих отношение к имплантации эмбриона, и их прикладное значение для клинической репродуктивной медицины.

История изучения оплодотворения

До того, как в XVII в. зародилась современная биология репродукции и развития , наиболее распространенным было учение о «семенах» плюралистического течения пифагорейской школы, представителями которого были Анаксагор из Клазомен и Эмпедокл из Акрагаса (V в. до н.э.). С точки зрения репродукции человека, термин «плюрализм» означает, что плод происходит от двух родительских «семян». Гиппократ (около 460-370 гг. до н.э.) утверждал, что «семена» вырабатываются всеми частями организма, и каждое «семя» содержит как мужское, так и женское начало; при зачатии потомству передаются части тела, напоминающие того или иного родителя.

Век спустя Аристотель (384-322 гг. до н.э.) подверг критике теорию Гиппократа. Согласно воззрениям Аристотеля, вклад в развитие плода вносит только мужское семя, роль же женщины сводится к обеспечению плода менструальной кровью. Он же заметил, что иногда дети больше напоминают своих дедушек и бабушек, нежели родителей. То, что «семена» тканей и крови могут никак не проявиться у детей, а проявляются только у внуков, с трудом поддавалось объяснению. Аристотель предположил, что мужское семя представляет собой смесь ингредиентов, иногда составленную несовершенно, из-за чего материал предыдущих поколений может проходить незамеченным. Большинство своих идей Аристотель представил в трактате «О происхождении животных».

Это была одна из первых законченных работ по эмбриологии . Более того, Аристотель впервые применил в своем трактате иллюстрации, позволявшие лучше понять его идеи.

Гален (130-201 гг. до н.э.), считающийся величайшим греческим врачом после Гиппократа и основателем экспериментальной физиологии, разделял взгляды Гиппократа на совместный вклад мужских и женских «семян» в репродукцию, но считал, что каждое из них содержит только один элемент. В XVII веке несколько выдающихся открытий дали толчок новым научным направлениям репродуктивной биологии. Уильям Харви (1578-1657) впервые предположил, что человек и другие млекопитающие размножаются посредством оплодотворения ооцита спермой.

Однако основателем современной репродуктивной биологии многие авторы считают Ренье де Граафа (1641-1673). Именно де Грааф в 1672 г. установил, что источником яйцеклеток служат тестикулы женщин, которые теперь мы называем яичниками. Через 5 лет студент-медик Иоганн Хэм впервые увидел под микроскопом в семенной жидкости сперматозоиды, о чем сообщил Антони ван Левенгуку. Он назвал их «анималькулами» и предположил, что они появляются в процессе разложения семенной жидкости.

Левенгук (1632-1723) был первым ученым, сделавшим подробное описание сперматозоидов как составного компонента спермы. Он также предположил, что оплодотворение происходит при проникновении сперматозоида в яйцеклетку, но наблюдать этот процесс ученые не могли в течение последующего столетия из-за низкого качества имеющихся в то время микроскопов.

Другое революционное для научного мышления открытие было сделано итальянским священником и физиологом Ладзаро Спалланцани в 1779 г. До этого времени знания о размножении основывались на примере растений. Считали, что эмбрион - «производное мужского семени, взращенного на женской почве». В своих опытах Спалланцани впервые доказал, что для развития эмбриона необходим истинный физический контакт между яйцеклеткой и спермой. Спалланцани провел серию успешных инсеминаций лягушек, рыб и собак.

Первое успешное искусственное оплодотворение женщины было произведено через 11 лет после опытов Спалланцани. В 1790 г. известный шотландский анатом и хирург доктор Джон Хантер сообщил об успешной инсеминации жены одного мануфактурного торговца спермой мужа. Все эти открытия привели к созданию современных репродуктивных технологий, благодаря которым 25 июля 1978 г. произошло рождение первого ребенка, зачатого с помощью ЭКО (метод разработан Эдвардсом и Стептоу).

Оплодотворение – это сложный механизм последовательных процессов, только при строгом соблюдении условий которого можно получить желанную беременность. Так, женщина должна иметь созревшую яйцеклетку, проходимые маточные трубы, достаточную толщину слизистой оболочки матки, которая должна быть готова к прикреплению оплодотворенной яйцеклетки. После имплантации женский организм должен обеспечить гормональную поддержку беременности.

У мужчины должно быть достаточное количество морфологически нормальных подвижных зрелых сперматозоидов, способных через шейку матки проникнуть в полость матки, маточную трубу и оплодотворить яйцеклетку.

У женщин половые клетки называются яйцеклетки, а у мужчин - сперматозоиды.

Яйцеклетка напоминает обычную клетку, имеет округлую форму, включает ядро, имеющем в своем составе ДНК (материнский генетический материал), цитоплазму и оболочку. Клетка окружена так называемым «лучистым венцом», состоящим из защитных клеток.

Сперматозоид имеет принципиально иное строение. Это обусловлено выполняемой им функцией: ему необходимо преодолеть расстояние от шейки матки до яичникового отдела маточной трубы. Сперматозоид имеет головку (в которой содержится ДНК: отцовский генетический материал), шейку и хвостик. На головке у сперматозоида имеется специальная структура – акросома, содержащая ферменты, способствующие проникновению сперматозоида в яйцеклетку.

Принципиальное отличие женского и мужского организмов заключается в том, что запас яйцеклеток в женском организме строго ограничен и закладывается во время внутриутробного развития девочки. Когда врожденный запас фолликулов истощается, женщина утрачивает репродуктивную функцию (менопауза). В мужском организме процесс образования сперматозоидов не зависит от возраста и носит постоянный характер.

Физиологический процесс оплодотворения

Процесс оплодотворения полностью зависит от гормональной регуляции, психоэмоционального состояния женского организма, факторов окружающей среды и др. Менструальный цикл условно начинается с первого дня менструации, когда происходит «обнуление» гормонального фона. Именно тогда начинается рост когорты фолликулов, из которых к 5-7 дню менструального цикла происходит отбор одного фолликула. По достижении фолликулом размеров 18-25 мм (обычно на 12-14 день менструального цикла) происходит овуляция.

В результате происходит выход яйцеклетки в брюшную полость, откуда при помощи фимбрий (особых выростов маточной трубы) попадает в яичниковый отдел маточной трубы, где происходит ее встреча со сперматозоидами, которые, в свою очередь, после эякуляции проделали долгий путь в течении нескольких часов по женским половым путям. В результате этой встречи, при наличии благоприятных условий среды, происходит оплодотворение.

В дальнейшем, уже делящийся эмбрион (зигота - содержащий материнский и отцовский генетический материал) совершает путь по маточным трубам к матке за счет перистальтических сокращений стенок маточных труб, движения ворсинок и капиллярного тока жидкости. В дальнейшем, попадая в полость матки, эмбрион прикрепляется к одной и стенок матки, происходит имплантация и дальнейшее развитие эмбриона.

Условия, необходимые для успешного процесса оплодотворения:

созревание фолликула в яичнике, готовая к оплодотворению яйцеклетка;

овуляция, достаточная функция желтого тела;

нормальная концентрация качественных активных сперматозоидов;

проникновение сперматозоидов в маточные трубы, их продвижение по женским половым путям, способность к оплодотворению;