Каждое действие рождает противодействие закон физики. Законы кармы: на каждое наше действие у Вселенной есть определенное противодействие. Примеры решения задач

Кинематика – изучает движение тел, не рассматривая причины, которые это движение обуславливает.

Мат.точка – не имеет размеров, но в мат.точке сосредоточенна масса всего тела.

Поступательное – движение при котором прямая связанная с телом остаётся || самой себе.

Кинетические ур-я движения мат.точки:

Траектория – линия описываемая мат.точкой в пространстве.

Перемещение – приращение радиуса-вектора точки за рассматриваемый промежуток времени.

Скорость – Быстрота движения мат.точки.

Вектором средней скорости<> называется отношение приращения радиуса-вектора точки к промежутку времени.

Мгновенная скорость – величина, равная первой производной радиуса-вектора движущейся точки по времени.

Модуль мгновенной скорости равен первой производной пути по времени.

Компоненты равны производным от координат по времени.

Равномерное – движение при котором за равные промежутки времени тело проходит одинаковые пути.

Неравномерное – движение при котором скорость меняется как по модулю так и по направлению.

    Ускорение и его составляющие.

Ускорение – физ.величина, определяющая быстроту изменения скорости, как по модулю, так и по направлению.

Средним ускорением неравномерного движения в интервале времени от t до t+t называется векторная величина равная отношению изменения скорости к интервалу времениt: .Мгновенным ускорением мат.точки в момент времени t будет предел среднего ускорения. ..

определяет по модулю.

определяет по направлению.т.е. равна первой производной по времени от модуля скорости, определяя тем самым быстроту изменения скорости по модулю.

Нормальная составляющая ускорения направлена по нормали к траектории к центру её кривизны (поэтому её также называют центростремительным ускорением).

Полное ускорение тела есть геометрическая сумма тангенциальной и нормальной составляющих.

Если а н =?,а т =?

  1. 1,2,3 Законы Ньютона.

В основе Динамики мат.точки лежат три закона Ньютона.

Первый закон Ньютона – всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её изменить это состояние.

Инертность – стремление тела сохранять состояние покоя или равномерного прямолинейного движения.

Законы Ньютона выполняются только в инерциальной системе отсчёта .

Инерциальная система отсчёта – система, которая либо покоится, либо движется равномерно и прямолинейно относительно какой то другой инерциальной системы.

Масса тела – физ.величина, являющаяся одной из основных характеристик материи, определяющая её инерционные (инертная масса) и гравитационные (гравитационная масса) св-ва.

Сила – векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.

Второй закон Ньютона – ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе, совпадает с нею по направлению и обратно пропорционально массе материальной точки.

Импульс (кол-во движения) – векторная величина, численно равная произведению массы материальной точки на её скорость и имеющая направление скорости.

Более общая формулировка 2-го закона Н.(уравнение движения мт): скорость изменения импульса материальной точки равна действующей на неё силе.

Следствие из 2зН: принцип независимости действия сил: если на мт действует одновременно несколько сил, то каждая из этих сил сообщает мт ускорение согласно 2зН, как будто других сил не было.

Третий закон Ньютона. Всякое действие мт (тел) друг на друга, носит характер взаимодействия; силы, с которыми действуют друг на друга мт, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки.

    Импульс тела, сила. Закон сохранения импульса.

Внутренние силы – силы взаимодействия между мт механической системы.

Внешние силы – силы, с которыми на мт системы действуют внешние тела.

В механической системе тел, по 3-му закону Ньютона, силы, действующие между этими телами, будут равны и противоположно направлены, т.е. геометрическая сумма внутренних сил равна 0.

Запишем 2зН, для каждого из n тел механической системы(мс):

…………………

Сложим эти ур-я:

Т.к. геометрическая сумма внутренних сил мс по 3зН равна 0, то:

где - импульс системы.

В случае отсутствия внешних сил(замкнутая система):

, т.е.

Это и есть закон сохранения импульса : импульс замкнутой системы сохраняется, т.е. не изменяется с течением времени.

    Центр масс, движение центра масс.

Центр масс (центр инерции) системы мт называется воображаемая точка С , положение которой характеризует распределение массы этой системы.

Радиус-вектор этой точки равен:

Скорость центра масс (цм):

; , т.е. импульс системы равен произведению массы системы на скорость её центра масс.

Т.к. то:, т.е.:

Закон движения центра масс: центр масс системы движется как мт, в которой сосредоточена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, действующих на систему.

    Кинематика вращательного движения материальной точки.

Угловая скорость – векторная величина, равная первой производной угла поворота тела по времени.

Вектор направлен вдоль оси вращения по правилу правого винта.

Линейная скорость точки:

В векторном виде: , при этом модуль равен:.

Если =const, то вращение равномерное.

Период вращения (Т) – время, за которое точка совершает один полный оборот. ().

Частота вращения ( n ) – число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени. ;.

Угловое ускорение – векторная величина, равная первой производной угловой скорости по времени: . При ускоренном, при замедленном.

Тангенциальная составляющая ускорения:

Нормальная составляющая: .

Формулы связи линейных и угловых величин:

При :

    Момент силы.

Момент силы F относительно неподвижной точки О называется физическая величина, определяемая векторным произведением радиуса-вектора r , проведённого из точки О в точку А приложения силы, на силу F.

Здесь - псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении отк.

Модуль момента силы равен .

Момент силы относительно неподвижной оси z – скалярная величина , равная проекции на эту ось векторамомента силы, определённого относительно произвольной точки О данной осиz. Значение момента не зависит от выбора положения точки О на данной оси.

    Момент инерции твёрдого тела. Теорема Штейнера.

Момент инерции системы (тела) относительно оси вращения называется физическая величина, равная сумме произведений масс n мт системы на квадрат их расстояний до рассматриваемой оси.

При непрерывном распределении масс.

Теорема Штейнера: момент инерции тела J относительно любой оси вращения равен моменту его инерции J C относительно параллельной оси, проходящеё через центр масс С тела, сложенному с произведением массы m тела на квадрат расстояния а между осями:

    Основное уравнение динамики вращательного движения.

Пусть сила F приложена к точке В. Находящейся от оси вращения на расстоянии r, -угол между направлением силы и радиус-векторомr. При повороте тела на бесконечно малый угол , точка приложения В проходит путь, и работа равна произведению проекции силы на направление смещения на величину смещения:

Учитывая, что , запишем:

Где -момент силы, относительно оси.

Работа при вращении тела равна произведению момента действующей силы на угол поворота.

Работа при вращении тела идёт на увеличение его кинетической энергии:

Но ,, поэтому

Учитывая, что получим:

Этот и есть относительно неподвижной оси.

Если ось вращения совпадает с главной осью инерции, проходящей через центр масс, то: .

    Момент импульса. Закон сохранения момента импульса.

Момент импульса (количество движения) мт А относительно неподвижной точки О – физическая величина, определяемая векторным произведением:

где r-радиус-вектор, проведённый из точки О в точку А; - импульс мт.-псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении отк.

Модуль вектора момента импульса:

Момент импульса относительно неподвижной оси z называется скалярная величина L z , равная проекции на эту ось вектора момента импульса, определённого относительно произвольной точки О данной оси.

Т.к. , то момент импульса отдельной частицы:

Момент импульса твёрдого тела относительно оси есть сумма моментов импульса отдельных частиц, а т.к. , то:

Т.о. момент импульса твёрдого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость.

Продифференцируем последнее уравнение: , т.е.:

это и есть уравнение динамики вращательного движения твёрдого тела относительно неподвижной оси: Производная момента импульса твёрдого тела относительно оси равна моменту сил относительно той же оси.

Можно показать, что имеет место векторное равенство:

В замкнутой системе момент внешних сил и, откуда:L=const, это выражение и есть закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т.е. не изменяется с течением времени.

    Работа силы. Мощность.

Энергия – универсальная мера различных форм движения и взаимодействия.

Работа силы – величина, характеризующая процесс обмена энергией между взаимодействующими телами в механике.

Если тело движется прямолинейно и на него действует постоянная сила , которая составляет некоторый уголс направлением перемещения, торабота этой силы равна произведению проекции силы F s на направление перемещения, умноженной на перемещение точки приложения силы:

Элементарная работа силы на перемещенииназывается скалярная величина, равная:, где,,.

Работа силы на участке траектории от 1 до 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути:

Если на графике изображена зависимость F s от S, то работа определяется на графике площадью закрашенной фигуры.

При , то А>0

При , то А<0,

При , то А=0.

Мощность – скорость совершения работы.

Т.е. мощность равна скалярному произведению вектору силы на вектор скорости, с которой движется точка приложения силы.

    Кинетическая и потенциальная энергия поступательного и вращательного движения.

Кинетическая энергия механической системы – энергия механического движения этой системы. dA=dT. По 2зН , помножим наи получим:;

Отсюда:.

Кинетическая энергия системы – есть функция состояния её движения, она всегда , и зависит от выбора системы отсчёта.

Потенциальная энергия – механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.

Если силовое поле характеризуется тем, что работа совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории, по которой это перемещение произошло, а зависит только от начального и конечного положений, то такое поле называется потенциальным, а силы, действующие в нём – консервативными, если же работа зависит от траектории то такая сила – диссипативная .

Т.к. работа совершается за счёт убыли потенциальной энергии, то: ;;, где С – постоянная интегрирования, т.е. энергия определяется с точностью до некоторой произвольной постоянной.

Если силы консервативны, то:

- Градиент скаляра П. (также обозначается ).

Т.к. начало отсчёта выбирается произвольно, то потенциальная энергия может иметь отрицательное значение. (при П=-mgh’).

Найдём потенциальную энергию пружины.

Сила упругости: , по 3зН:F x =-F x упр =kx;

dA=F x dx=kxdx;.

Потенциальная энергия системы является функцией состояния системы, она зависит только от конфигурации системы и от её положения по отношению к внешним телам.

Кинетическая энергия вращения

    Механическая энергия. Закон сохранения механической энергии.

Полная механическая энергия системы – энергия механического движения и взаимодействия: Е=Т+П, т.е. равна сумме кинетической и потенциальной энергий.

Пусть F 1 ’…F n ’ – равнодействующие внутренних консервативных сил. F 1 …F n - равнодействующие внешних консервативных сил. f 1 …f n . Запишем уравнения 2зН для этих точек:

Умножим каждое ур-е на , учтя, что.

Сложим ур-я:

Первый член левой части:

Где dT есть приращение кинетической энергии системы.

Второй член равен элементарной работе внутренних и внешних сил, взятой со знаком минус, т.е. равен элементарному приращению потенциальной энергииdП системы.

Правая часть равенства задаёт работу вешних неконсервативных сил, действующих на систему. Т.о.:

Если внешние неконсервативные силы отсутствуют, то:

d(Т+П)=0;Т+П=Е=const

Т.е. полная механическая энергия системы сохраняется постоянной. Закон сохранения механической энергии : в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т.е. не изменяется со временем.

    Абсолютно упругий удар.

Удар (соударение)

Коэффициент восстановления

абсолютно неупругими , если =1 тоабсолютно упругими.

Линия удара

Центральный удар

Абсолютно упругий удар – столкновение 2-х тел, в результате которого в обоих взаимодействующих не остаётся ни каких деформаций и вся кинетическая энергия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию.

Для абсолютно упругого удара выполняются закон сохранения импульса и закон сохранения энергии.

Законы сохранения:

m 1 v 1 +m 2 v 2 =m 1 v’ 1 +m 2 v’ 2

после преобразований:

откуда:v 1 +v 1 ’=v 2 +v 2 ’

решая последнее ур-е и предпедпоследнее найдём:

    Абсолютно неупругий удар.

Удар (соударение) – столкновение 2-х или более тел, при котором взаимодействие длится очень короткое время. При ударе внешними силами можно пренебречь.

Коэффициент восстановления – отношение нормальной составляющей относительной скорости тел после и до удара.

Если для сталкивающих тел =0, то такие тела называютсяабсолютно неупругими , если =1 тоабсолютно упругими.

Линия удара – прямая проходящая через точку соприкосновения тел и нормальная к поверхности их соприкосновения.

Центральный удар – такой удар, при котором тела до удара движутся вдоль прямой, проходящей через их центр масс.

Абсолютно неупругий удар – столкновении 2-х тел, в результате которого тела объединяются, двигаясь дальше, как единое целое.

Закон сохранения импульса:

Если шары двигались навстречу друг другу, то при абсолютно неупругом ударе шары движутся в сторону большего импульса.

    Поле тяготения, напряжённость, потенциал.

Закон всемирного тяготения: между любыми двумя мт действует сила взаимного притяжения, прямо пропорциональная произведению масс этих точек и обратно пропорциональная квадрату расстояния между ними:

G – Гравитационная постоянная (G=6,67*10 -11 Hm 2 /(кг) 2)

Гравитационное взаимодействие между двумя телами осуществляется с помощью поля тяготения , или гравитационного поля. Это поле порождается телами и является формой существования материи. Основное св-во поля в том, что на всякое тело внесённое в это поле действует сила тяготения:

Вектор не завит от массы и называется напряжённостью поля тяготения.

Напряжённость поля тяготения определяется силой действующей со стороны поля на мт единичной массы, и совпадает по направлению с действующей силой, напряжённость есть силовая хар-ка поля тяготения.

Поле тяготения однородное если напряжённость во всех точках его одинакова, и центральным , если во всех точках поля векторы напряжённости направлены вдоль прямых, которые пересекаются в одной точке.

Гравитационное поле тяготения – носитель энергии.

На расстоянии R на тело действует сила:

при перемещении этого тела на расстояние dR затрачивается работа:

Знак минус появляется, т.к. сила и перемещение в данном случае противоположны по направлению.

Затраченная работа в пол тяготения не зависит от траектории перемещения, т.е. илы тяготения консервативны, а поле тяготения является потенциальным.

Если то П 2 =0, тогда запишем:,

Потенциал поля тяготения – скалярная величина, определяемая потенциальной энергией тела единичной массы в данной точке поля или работой по перемещению единичной массы из данной точки поля в бесконечность. Т.о.:

Эквипотенциальные – такие поверхности, для которых потенциал постоянен.

Взаимосвязь между потенциалом и напряженностью.

Знак мину указывает на то, что вектор напряжённости направлен в сторону убывания потенциала.

Если тело находится на высоте h, то

    Неинерциальная система отсчёта. Силы инерции при ускоренном поступательном движении системы отсчёта.

Неинерциальная – система отсчёта, движущаяся относительно инерциальной системы отсчёта с ускорением.

Законы Н можно применять в неинерциальной системе отсчёта, если учесть силы инерции. Силы инерции при этом должны быть такими, чтобы вместе с силами, обусловленными воздействием тел друг на друга, они сообщали телу ускорение, каким оно обладает в неинерциальных системах отсчёта, т.е.:

Силы инерции при ускоренном поступательном движении системы отсчёта.

Т.е. угол отклонения нити от вертикали равен:

Относительно системы отсчёта, связанной с тележкой шарик покоится, что возможно, если сила F уравновешивается равной и противоположно направленной ей силой F ин, т.е.:

    Силы инерции, действующие на тело, покоящееся во вращающейся системе отсчёта.

Пусть диск равномерно вращается с угловой скоростью вокруг вертикальной оси, проходящей через его центр. На диске на разных расстояниях от оси вращения установлены маятники (на нитях подвешены шарики). При вращении маятников вместе с диском шарики отклоняются от вертикали на некоторый угол.

В инерциальной системе отсчёта, связанной с помещением, на шарик действует сила, равная , и направлена перпендикулярно оси вращения диска. Она является равнодействующей силы тяжестии силы натяжения нити:

Когда движение шарика установится, то:

т.е. углы отклонения нитей маятников будут тем больше, чем больше расстояние R от шарика до оси вращения диска и чем больше угловая скорость вращения .

Относительно системы отсчёта, связанной с вращающимся диском, шарик покоится, что возможно, если сила уравновешивается равной и противоположно направленной ей силой.

Сила , называемаяцентробежной силой инерции , направлена по горизонтали от оси вращения диска и равна:.

    Гидростатическое давление, закон Архимеда, закон неразрывности струи.

Гидроаэромеханика – раздел механики, изучающий равновесие и движение жидкостей и газов, их взаимодействие между собой и обтекаемыми ими твёрдыми телами.

Несжимаемая жидкость – жидкость, плотность которой всюду одинакова и не изменяется со временем.

Давление – физическая величина, определяемая нормальной силой, действующей о стороны жидкости на единицу площади:

Закон Паскаля – давление в любом месте покоящейся жидкости одинаково по всем направлениям, причём давление одинаково передаётся по всему объёму, занятому покоящейся жидкости.

Если жидкость не сжимаема, то при поперечном сечении S столба жидкости, его высоте h и плотности вес:

А давление на нижнее основание:,т.е. давление изменяется линейно с высотой. Давлениеназываетсягидростатическим давлением .

Из этого следует, что давление на нижние слои жидкости будет больше, чем на верхние, значит на тело, погружённое в жидкость действует выталкивающая сила, определяемая законом Архимеда: на тело погружённое в жидкость (газ), действует со стороны этой жидкости направленная вверх выталкивающая сила, равная весу вытесненной телом жидкости:,

Течение – движение жидкости.Поток – совокупность частиц движущейся жидкости.Линии тока – графическое изображение движения жидкости.

Течение жидкости установившееся (стационарно) , если форма расположения линий тока, а так же значения скоростей в каждой её точке со временем не изменяются.

За 1с через сечение S 1 пройдёт объём жидкости равный , а черезS 2 - , здесь предполагается, что скорость жидкости в сечении постоянна. Если жидкость не сжимаема, то через оба сечения пройдёт равный объём:

Это и есть уравнение неразрывности струи для несжимаемой жидкости.

    Закон Бернулли.

Жидкость идеальна, движение стационарно.

За малый промежуток времени жидкость перемещается от сеченийS 1 и S 2 к сечениям S’ 1 и S’ 2 .

По закону сохранения энергии изменение полной энергии идеальной несжимаемой жидкости равно работе внешних сил по перемещению массы жидкости:,

где Е 1 и Е 2 – полные энергии жидкости массой m в местах сечений S 1 и S 2 соответственно.

С другой стороны А – это работа, совершаемая при перемещении всей жидкости, заключённой между сечениями S 1 и S 2 , за рассматриваемый промежуток времени . Для переноса массыm от S 1 до S’ 1 жидкость должна переместится на расстояние и отS 2 до S’ 2 на расстояние .,гдеF 1 =p 1 S 1 и F 2 =-p 2 S 2 .

Полные энергии Е 1 и Е 2 будут складываться из кинетической и потенциальной энергий массы жидкости:

Учтя, что

разделим ур-е на :

т.к. сечения выбирались произвольно, то:

Это выражение и есть уравнение Бернулли – выражение закона сохранения энергии, применительно к установившемуся течению идеальной жидкости.

p – это статическое (избыточное) давление ,

- динамическое давление.

- гидростатическое давление.

Из ур-я Бернулли и ур-я неразрывности следует, что при течении жидкости по горизонтальной трубе, имеющей различные сечения, скорость жидкости больше в местах сужения, а статическое давление больше в более широких местах.

ФормулаТорричелли.

Рассмотрим два сечения (на уровне h 1 и h 2), напишем для них ур-е Бернулли:

Т.к. p 1 =p 2 =Атм., то:

из ур-я неразрывности следует, что,

Если S 1 >>S 2 , то , и членомможно пренебречь:

это выражение и есть формула Торричелли .

    Внутреннее трение (вязкость). Режимы течения.

Вязкость – св-во реальных жидкостей оказывать сопротивление перемещению одной части жидкости относительно другой.

Градиент скорости – величина показывает, как быстро меняется скорость при переходе от слоя к слою, в направлении перпендикулярном движению слоёв, т.о. сила трения:

Где вязкость – коэффициент пропорциональности, зависящий от природы жидкости.

Режимы течения:

    Ламинарное – течение, при котором каждый выделенный тонкий слой скользит относительно соседних, не перемешиваясь с ними.

Это течение наблюдается при низких скоростях её движения.

    Турбулентное – течение, при котором вдоль потока происходит интенсивное вихреобразование, и перемешивание жидкости.

Частицы жидкостей приобретают составляющие скоростей, перпендикулярны течению, поэтому они могут переходить из одного слоя в другой. Из-за большого градиента скоростей у поверхности трубы происходит образование вихрей.

Вязкость жидкости – перенос импульса между контактирующими слоями.-кинематическая вязкость.

R e – число Рейнольдса , характер движения завит от него:

R e <=1000, то ламинарное

1000<=R e <=2000, переход от ламинарного к турбулентному.

R e =2300, то турбулентному

    Метод Стокса.

Основан на измерении скорости медленно движущихся в жидкости небольших тел сферической формы.

На шарик, падающий в жидкости вертикально вниз, действуют 3 силы:

Сила тяжести: (плотность шарика)

Сила Архимеда: (плотность жидкости)

Сила сопротивления (Стокса): .

При равномерном движении шарика:

проекции:

    Метод Пуазейля.

Основан на ламинарном течении жидкости в тонком капилляре.

В жидкости мысленно выделим цилиндрический слой радиусом r и толщиной dr, сила внутреннего трения, действующая на боковую поверхность этого слоя равна:,

где dS – боковая поверхность, есть (-), т.к. при возрастании радиуса скорость уменьшается.

Сила вязкости уравновешивается силой давления, действующей на основание:

За время t из трубы вытечет жидкость объёмом:

    Поверхностное натяжение.

Для жидкости характерен ближний порядок расположения частиц, т.е. их упорядоченное расположение, повторяющееся на расстояниях, сравнимых с межатомными.

Радиус молекулярного действия ( r =10 -9 м) – С расстояния более этого радиуса силами межмолекулярного взаимодействия можно пренебречь.

Результирующие силы всех молекул поверхностного слоя оказывают на жидкость давление, называемое молекулярным, или внутренним.

У молекул на поверхности сущ-ет дополнительная П. энергия, называемая поверхностной энергией .,

где сигма – поверхностное натяжение.

где - сила поверхностного натяжения, действующая на единицу длины контура поверхности жидкости.,

эта работа совершается за счёт уменьшения поверхностной энергии, т.е.:

т.е. поверхностное натяжение равно силе поверхностного натяжения, действующей на единицу длины контура поверхности жидкости.

Поверхностно-активные – в-ва, влияющие на поверхностное натяжение жидкости.

(мыло - , соль/сахар -)

    Смачивание и не смачивание.

Краевой угол – угол между касательными к поверхности жидкости и твёрдого тела.

Условие равновесия капли является равенство нулю суммы проекций сил поверхностного натяжения на направление касательной к поверхности твёрдого тела:;

Из этого условия следует, что:

смачивание

не смачивание

Условие равновесия жидкости:

Полное смачивание:

Полное не смачивание:

    Давление под искривлённой поверхностью жидкости. Формула Лапласа.

Если поверхность жидкости не плоская, а искривленная, то она оказывает на жидкость избыточное (добавочное) давление, т.к. действуют силы поверхностного натяжения, для выпуклой поверхности положительно, а для вогнутой – отрицательно.На каждый бесконечно малый элемент длиныконтура действует сила поверхностного натяжения:,

касательная к поверхности сферы.

Разложив на две составляющие, видим, что геометрическая сумма силравна нулю, т.е. равнодействующая сил поверхностного натяжения, действующих на вырезанный сегмент, направлена перпендикулярно плоскости сечения. И равна:

Это и есть формула избыточного (добавочного) давления для выпуклой поверхности.

Для вогнутой:

Эти две формулы являются частными случаями формулы Лапласа, определяющей избыточное давление для произвольной поверхности жидкости двоякой кривизны:.

    Капиллярные явления.

Капиллярность – явление изменения высоты жидкости в капиллярах.

жидкость в капилляре поднимается или отпускается на такую высоту h, при которой давление столба жидкости (гидростатическое давление) уравновешивается избыточным давлением, т.е..

Первый закон Ньютона : существуют системы отсчета, в которых любое изолированное не подвергающееся действию внешних сил тело сохраняет свое состояние покоя или равномерного прямолинейного движения. Такие системы отсчета называются инерциальными.
Первый закон Ньютона часто называют законом инерции, поскольку движение, не поддерживаемое никаким воздействием, - это движение по инерции. При формулировке закона инерции И. Ньютон опирался на труды Г. Галилея, который первым понял ошибочность утверждения, что тело, на которое ничто не действует, может только покоиться. Галилей показал, что такое тело может либо покоиться, либо двигаться с постоянной скоростью.
Второй закон Ньютона: под действием силы F тело массой т приобретает такое ускорение а, что произведение массы на ускорение будет равно действующей силе, т. е.

Второй закон Ньютона показывает, что причиной изменения скорости тела является действие на него окружающих тел.

Формула второго закона ньютона:

где Ар - изменение импульса тела за время At, вызванное действием силы F. Формула (1) справедлива лишь в том случае, когда масса тела т не изменяется, в то время как (2) верна всегда. Видно, что при т = const формула (2) обращается в формулу (1):

Учитывая принцип суперпозиции сил (равнодействующая нескольких сил равна их векторной сумме), второй закон Ньютона можно записать в виде:
ma = F1 + ... + Fn.

Третий закон Ньютона : при взаимодействии двух тел силы, с которыми они действуют друг на друга, равны по модулю и противоположны, по направлению, т. е.
F12 = - F21
Силы, о которых идет речь в третьем законе Ньютона, приложены к разным телам, но всегда имеют одну природу.
Примерами таких пар сил могут служить: силы гравитационного взаимодействия двух тел; вес тела и сила реакции опоры; кулоновские силы и др.
Являясь основой классической механики, законы Ньютона описывают взаимодействия макроскопических тел, участвующих в нерелятивистских движениях (их скорости много меньше скорости света). При этом тела рассматриваются как материальные точки, а движение описывается относительно инерциальных систем отсчета.

Третий закон Ньютона гласит: «На каждое действие есть противодействие». Но это касается не только физических явлений - на самом деле примерно то же самое происходит и в нашей жизни. Когда мы думаем, говорим или совершаем какой-либо поступок, мы приводим в действие силу, которая будет отвечать нам таким же образом.

1.Закон причины и следствия.
Что бы мы ни сотворили во Вселенной, она всегда нам это вернет. Поэтому если мы желаем обрести любовь, настоящую дружбу и счастье, то в первую очередь мы сами должны любить близких, быть верным другом и делать людей счастливыми.

2.Закон создания.
Ключ к правильному внутреннему состоянию - независимость от окружающего мира. Чтобы ее достичь, нужно быть самим собой и окружать себя теми людьми и теми вещами, которые мы действительно любим и хотим видеть в нашей жизни.

3.Закон смирения.
Мы не сможем изменить ситуацию до тех пор, пока не примем ее. А если мы в ком-то видим только врага, то это значит, что мы сами пока не ориентированы на более высокий уровень существования.

4. Закон роста.
Главное для нас - это чтобы изменились и выросли мы сами, а не люди, города или технологии вокруг нас, ведь жизнь и время, отпущенное нам, - это все, что у нас на самом деле есть.

5. Закон ответственности.
Жизнь - это зеркало. Когда в ней что-то идет не так, это значит, что и у нас самих есть внутренние проблемы, поэтому мы должны взять на себя ответственность за происходящее, а не искать виноватых.

6. Закон связи.
Даже если то, что мы делаем, кажется нам несущественным, очень важно делать это, так как все во Вселенной взаимосвязано. Первый шаг не может быть важнее, чем последний, и наоборот, так как они оба необходимы, чтобы выполнить задачу.

7. Закон фокуса.
Невозможно думать о двух вещах одновременно. Если сосредоточиться на поиске чего-то важного, например, духовных ценностей, то в голове не останется места для жадности или гнева.

8. Закон принятия.
Мы по-настоящему понимаем и принимаем лишь то, что познали на практике. Если мы считаем что-то правдой, но не готовы это доказать - значит, у нас есть всего лишь мнение, а не знание.

9. Закон здесь и сейчас.
Копание в прошлом и навязчивые мечты о будущем отвлекают нас от того, что происходит в настоящий момент, а старые модели поведения и старые мечты мешают нам находить что-то новое.

10. Закон изменения.
История будет повторяться до тех пор, пока мы не извлечем из нее уроки, которые изменят наш путь, потому не стоит каждый раз делать одно и то же, при этом ожидая разных результатов.

11. Закон терпения и вознаграждения.
Любая награда требует вложения труда, а истинная радость жизни в том, чтобы продолжать упорно трудиться, зная, что рано или поздно мы добьемся своей цели.

12. Закон значения и вдохновения.
Мы получаем только то, что заслужили, ведь истинная ценность чего-либо равна энергии и силам, которые мы потратили, чтобы получить желаемое. Но только тот, кто любит дарить, способен получить что-то вдохновляющее.

В школьном курсе физики изучаются три закона Ньютона, являющиеся основой классической механики. Сегодня с ними знаком каждый школьник, но во времена великого ученого подобные открытия считались революционными. Законы Ньютона, кратко и понятно будут описаны ниже, они помогают не только понять основу механики и взаимодействия объектов, но и помогают записать данные в качестве уравнения.

Впервые три закона Иссак Ньютон описал в труде «Математические начала натуральной философии» (1867 год), в котором были подробно изложены не только собственные выводы ученого, но все знания по этой теме открытые другими философами и математиками. Таким образом, труд стал фундаментальным в истории механики, а позднее и физики. В нем рассмотрены перемещение и взаимодействие массивных тел.

Интересно знать! Исаак Ньютон был не только талантливым физиком, математиком и астрономом, но и считался гением в механике. Занимал должность президента королевского общества Лондона.

Каждое утверждение освещает одну из сфер взаимодействия и перемещения предметов в природе, правда обращение к ним было несколько упразднено Ньютоном, и они были приняты как точки без определенного размера (математические).

Именно это упрощение позволило проигнорировать естественные физические явления: воздушное сопротивление, трение, температуру или другие физические показатели объекта.

Полученные данные могли быть описаны только по времени, массе или длине. Именно из-за этого формулировки Ньютона обеспечивают лишь подходящие, но приближенные значения, которые нельзя использовать для описания точной реакции крупных или изменяемых по форме объектов.

Перемещение массивных предметов, которые участвуют в определениях, принято исчислять в инерциальной , представленной в виде системы координат из трех измерений, и при этом она не увеличивает свою скорость и не оборачивается вокруг своей оси.

Ее часто называют системой отсчета Ньютона, но при этом ученый никогда не создавал и не использовал подобной системы, а использовал нерациональную. Именно в этой системе тела могут двигаться так, как описывает это Ньютон.

Первый закон

Называется законом инерции. Не существует его практической формулы, зато есть несколько формулировок. В учебниках по физике предлагается следующая формулировка первого закона Ньютона: есть инерциальные системы отсчета, в отношении которых объект, если он свободен от воздействия любых сил (или же они моментально компенсируется), находиться в полном покое или же двигается по прямой и с одинаковой скоростью. Что означает данное определение и как его понять?

Простыми словами первый закон Ньютона объясняется так: любое тело, если его не трогать и никоим образом не воздействовать на него, будет оставаться постоянно в состоянии покоя, то есть бесконечно стоять на месте. То же самое происходит и при его движении: оно будет равномерно двигаться по заданной траектории бесконечно, пока на него не воздействует что-либо.

Подобное утверждение озвучивал Галилео Галилей, но не смог уточнить и точно описать это явление. В этой формулировке важно правильно понять, что такое инерциальные системы отсчета. Если сказать совсем простыми словами, то это система, в которой выполняется действие данного определения.

В мире можно увидеть огромное множество подобных систем, если понаблюдать за движением:

  • поезда на заданном участке с одинаковой скоростью;
  • Луны вокруг Земли;
  • колеса обозрения в парке.

В качестве примера рассмотрим некоего парашютиста, который уже раскрыл парашют и движется прямолинейно и при этом равномерно по отношению к поверхности Земли. Движение человека не прекратиться до тех пор, пока земное притяжение будет компенсироваться движением и сопротивлением воздуха. Как только это сопротивление уменьшится, то притяжение увеличится, что приведет к изменению скорости парашютиста – его движение станет прямолинейным и равноускоренным.

Именно в отношении этой формулировки существует яблочная легенда: Исаак отдыхал в саду под яблоней и размышлял о физических явлениях, когда с дерева сорвалось спелое яблоко и упало в траву. Именно ровное падение заставило ученого изучить этот вопрос и выдать в итоге научное объяснение движению предмета в некой системе отсчета.

Интересно знать! Помимо трех явлений в механике, Исаак Ньютон также объяснил движение Луны как спутника Земли, создал корпускулярную теорию света и разложил радугу на 7 цветов.

Второй закон

Данное научное обоснование касается не просто движения предметов в пространстве, а взаимодействия их с другими объектами и результатов этого процесса.

Закон гласит: увеличение скорости объекта с некоторой постоянной массой в инерциальной системе отсчета прямо пропорционально силе воздействия и обратно пропорционально постоянной массе движущегося предмета.

Проще говоря, если существует некое движущиеся тело, масса которого не изменяется, и на него вдруг начнет воздействовать посторонняя сила, то оно начнет ускоряться. А вот скорость ускорения будет прямо зависеть от воздействия и обратно пропорционально зависеть от массы движущегося предмета.

Для примера можно рассмотреть снеговой шар, который катиться с горы. Если шар толкать по ходу движения, то ускорения шара будет зависеть от мощности воздействия: чем она больше, тем больше ускорение. Но, чем больше масса данного шара, тем меньше будет ускорение. Данное явление описывается формулой, в которой учитывается ускорение, или «a», равнодействующая масса всех воздействующих сил, или «F», а также масса самого предмета, или «m»:

Следует уточнить, что данная формула может существовать только в том случае, если равнодействующая всех сил не меньше и не равна нулю. Применяется закон только относительно тел, которые двигаются со скоростью меньше световой.

Полезное видео: первый и второй законы Ньютона

Третий закон

Многие слышали выражение: «На каждое действие есть свое противодействие». Его часто используют не только в общеобразовательных целях, но и воспитательных, объясняя, что на каждую силу найдется большая.

Эта формулировка пошла от очередного научного утверждения Исаака Ньютона, а точнее его третьего закона, который объясняет взаимодействие различных сил в природе относительно какого-либо тела.

Третий закон Ньютона определение имеет такое: предметы оказывают воздействие друг на друга с силами одинаковой природы (соединяющей массы предметов и направлены вдоль прямой), которые равны по своим модулям и при этом направлены в разные стороны. Данная формулировка звучит достаточно сложно, но простыми словами объяснить закон легко: каждая сила имеет свое противодействие или равную силу, направленную в обратную сторону.

Гораздо проще будет понять смысл закона, если в качестве примера взять пушку, из которой стреляют ядрами. Пушка воздействует на снаряд с той же силой, с которой снаряд воздействует на пушку. Подтверждением этого будет небольшое движение пушки назад во время выстрела, что подтвердит воздействие ядра на орудие. Если взять как пример тоже самое яблоко, которое падает на землю, то станет понятно, что яблоко и земля воздействуют друг на друга с равной силой.

Закон имеет также математическое определение, в котором используется сила первого тела (F1) и второго (F2):

Знак минуса сообщает о том, что векторы сил двух разных тел направлены в противоположные стороны. При этом важно помнить, что данные силы не компенсируют друг друга, поскольку направлены относительно двух тел, а не одного.

Полезное видео: 3 закона Ньютона на примере велосипеда

Вывод

Данные законы Ньютона кратко и четко необходимо знать каждому взрослому человеку, поскольку они являются основой механики и действуют в повседневной жизни, несмотря на то, что не при всех условиях данные закономерности соблюдаются. Они стали аксиомами в классической механике, и на основе их были созданы уравнения движения и энергии (сохранение импульса и сохранение механической энергии).

Вконтакте

В качестве первого из трех законов. Поэтому этот закон называют первым законом Ньютона .

Первый закон механики , или закон инерции был сформулирован Ньютоном следующим образом:

Любое тело удерживается в состоянии покоя или равномерного прямолинейного движения, пока под действием приложенных сил не изменяет это состояние .

В окружении любого тела, покоится оно или движется, есть другие тела, некоторые из которых или все как-то действуют на тело, влияют на состояние его движения. Чтобы выяснить влияние окружающих тел, надо исследовать каждый отдельный случай.

Рассмотрим какое-либо покоящееся тело, не обладающее ускорением, а скорость постоянна и равна нулю. Допустим, это будет шарик, подвешенный на резиновом шнуре. Он находится в покое относительно Земли. Около шарика множество различных тел: шнур, на котором он висит, множество предметов в комнате и других помещениях и, конечно, Земля. Однако, действие всех этих тел на шарик не одинаково. Если, например, убрать мебель в комнате, это не окажет какого-либо влияния на шарик. Но если перерезать шнур, шарик под влиянием Земли начнет падать вниз с ускорением. Но пока шнур не был перерезан, шарик находился в покое. Этот простой опыт показывает, что из всех тел, окружающих шарик, только два заметно влияют на него: резиновый шнур и Земля. Их совместное влияние и обеспечивает состояние покоя шарика. Стоило устранить одно из этих тел — шнур, и состояние покоя нарушилось. Если бы возможно было убрать Землю, это тоже нарушило бы покой шарика: он стал бы двигаться в противоположном направлении.

Отсюда приходим к выводу, что действия на шарик двух тел — шнура и Земли, компенсируют (уравновешивают) друг друга. Когда говорят, что действия двух или нескольких тел компенсируют друг друга, то это значит, что результат их совместного действия такой же, как если бы этих тел вовсе не было.

Рассмотренный пример, как и другие подобные примеры, позволяют сделать следующий вывод: если действия тел компенсируют друг друга, то тело под влиянием этих тел находится в состоянии покоя.

Таким образом, мы пришли к одному из основных законов механики , который называют первым законом Ньютона :

Существуют такие системы отсчета, относительно которых движущиеся тела сохраняют свою скорость постоянной, если на них не действуют другие тела или действие других тел компенсируется.

Однако, как выяснилось со временем, первый закон Ньютона выполняется только в инерциальных системах отсчета . Поэтому с точки зрения современных представлений закон Ньютона формулируют следующим образом:

Системы отсчета, относительно которых свободное тело при компенсации внешних воздействий движется равномерно и прямолинейно, называют инерциальными системами отсчета .

Свободным телом в этом случае называют тело, на которое другие тела не оказывают воздействия.

Необходимо помнить, что в первом законе Ньютона рассматриваются тела, которые могут быть представлены в качестве материальных точек.