Взаимоотношения материнского организма и плода биология. Иммунобиологические взаимоотношения плода и организма. Vii. обязательные для выполнения задания

В настоящее время в результате исследований создана стройная теория функциональной системымать - плод, имеющая очень большое значение для самой широкой акушерской практики. Обоснование и развитие этой концепции дало возможность с новых позиций оценить все те многообразные изменения, которые происходят в организме матери и плода при физиологически протекающей беременности.

В результате многочисленных теоретических и клинических исследований было установлено, что изменения состояния матери во время беременности активно влияют на развитие плода. В свою очередь состояние плода также небезразлично для матери. Доказано, что плод не является чем-то пассивным, как это считали ранее. От плода в различные периоды внутриутробного развития исходят многочисленные сигналы, посылаемые через различные системы его организма, которые воспринимаются соответствующими системами матери и под влиянием которых изменяется деятельность многих органов и функциональных систем материнского организма. Все это позволило обосновать стройную теорию о существовании во время беременности многозвеньевой системы мать - плод. Основным звеном, связывающим плод с матерью, является плацента.

52Онтогенез - это полный цикл индивидуального развития каждой особи, в основе которого лежит реализация наследственной информации на всех стадиях развития. Он начинается образованием зиготы и заканчивается смертью.

У многоклеточных животных важную роль в регуляции онтогенетических процессов играют эндокринная и нервная системы. В онтогенезе высших животных выделяют следующие этапы (периоды) онтогенеза:

ü предзародышевый (преэмбриональный) – развитие половых клеток (гаметогенез) и оплодотворение;

ü зародышевый (эмбриональный) – развитие организма под защитой яйцевых и зародышевых оболочек или под защитой материнского организма;

ü послезародышевый (постэмбриональный) – до достижения половой зрелости;

ü взрослое состояние – размножение, забота о потомстве, старение и гибель.

Кроме того, в рамках эмбрионального периода различают следующие типы онтогенеза:

ü первично-личиночный – личинка способна к самостоятельному существованию (паренхимулы губок, планулы кишечнополостных, трохофоры полихет, головастики амфибий);

ü неличиночный (яйцекладный) – прохождение ранних этапов гисто- и морфогенеза под защитой яйцевых оболочек (представители губок, кишечнополостных, кольчатых червей, ракообразных и многие другие группы, утратившие первично-личиночные стадии) и зародышевых оболочек (насекомые с прямым развитием, яйцекладущие амниоты);



ü внутриутробный – зародыш развивается под защитой материнского организма; при этом различают яйцеживорождение (морфологических связей между зародышем и материнским организмом не возникает), истинное живорождение (у плацентарных млекопитающих) и множество промежуточных типов (например, у живородящих акул, у сумчатых млекопитающих).

Смена типов эмбрионального развития повышает независимость гисто- и морфогенеза от внешней среды, способствует автономизации онтогенеза и возможности выхода в новую адаптивную зону.

В ходе реализации наследственной информации в процессе онтогенеза у организма формируются видовые и индивидуальные морфологические, физиологические и биохимические свойства, иными словами - фенотип. В процессе развития организм закономерно меняет свои характеристики, оставаясь тем не менее целостной системой. Поэтому под фенотипом надо понимать совокупность свойств на всем протяжении индивидуального развития, на каждом этапе которого существуют свои особенности.

53Индукция (от лат. inductio - побуждение, наведение) в эмбриологии - воздействие одних частей развивающегося зародыша (индукторов) на другие его части (реагирующую систему), осуществляющееся при их контакте и определяющее направление развития реагирующей системы, подобное направлению дифференцировки индуктора (гомотипическая индукция) или отличное от него (гетеротипическая индукция). индукция была открыта в 1901 немецким эмбриологом Х. Шпеманом при изучении образования линзы (хрусталика) глаза из эктодермы у зародышей земноводных. При удалении зачатка глаза линза не возникала. Зачаток глаза, пересаженный на бок зародыша, вызывал образование линзы из эктодермы, которая в норме должна была дифференцироваться в эпидермис кожи. Позже Шпеман обнаружил индуцирующее влияние хордомезодермы на образование из эктодермы гаструлы зачатка центральной нервной системы - нервной пластинки; он назвал это явление первичной эмбриональной индукцей , а индуктор - хордомезодерму - организатором. Дальнейшие исследования с удалением частей развивающегося организма и их культивированием по отдельности или в комбинации и пересадкой в чуждое им место зародыша показали, что явление индукции широко распространено у всех хордовых и многих беспозвоночных животных. Осуществление индукции возможно лишь при условии, что клетки реагирующей системы компетентны к данному воздействию, т. е. способны воспринимать индуцирующий стимул и отвечать на него образованием соответствующих структур.



В процессе развития осуществляется цепь индукционных влияний: клетки реагирующей системы, получившие стимул к дифференцировке, в свою очередь часто становятся индукторами для других реагирующих систем; индукционные влияния необходимы и для дальнейшей дифференцировки реагирующей системы в заданном направлении. Способность клеток, дифференцирующихся под индуктивным воздействием, самим индуцировать дифференцировку новой группы клеток получило название вторичной индукции.

Во многих случаях установлено, что в процессе индукции не только индуктор влияет на дифференцировку реагирующей системы, но и реагирующая система оказывает на индуктор воздействие, необходимое как для его собственной дифференцировки, так и для осуществления им индуцирующего влияния, т. е. что индукция - взаимодействие групп клеток развивающегося зародыша между собой. Для ряда органогенезов показано, что в процессе индукции из клеток индуктора в клетки реагирующей системы переходят вещества (индуцирующие агенты), которые участвуют в активации синтеза специфических информационных РНК, необходимых для синтеза соответствующих структурных белков в ядрах клеток реагирующей системы.

Действие индукторов, как правило, лишено видовой специфичности. Органоспецифическое действие собств. индукторов может быть в эксперименте заменено действием ряда органов и тканей зародышей старшего возраста и взрослых животных (чужеродные, или гетерогенные, индукторы) или выделенными из них химическими веществами - индуцирующими факторами (напр., из туловищных отделов 9-11-дневных куриных зародышей выделен т. н. вегетализующий фактор - белок с мол. м. ок. 30 000, вызывающий в компетентной эктодерме гаструлы земноводных образование энтодермы и вторично - хорды, мышц и др. производных мезодермы). Действие индукторов может быть имитировано обработкой клеток компетентной ткани более простыми химическими соединениями, например солями натрия и лития, сахарозой, а также некоторыми повреждающими клетки воздействиями; по-видимому, при этом в клетках высвобождаются собств. индуцирующие факторы, находившиеся в них в связанном состоянии. Такую индукцию иногда наз. эвокацией, а индуцирующие стимулы- эвокаторам индукции.

54Онтогенез, или индивидуальное развитие организма, осуществляется на основе наследственной программы, получаемой через вступившие в оплодотворение половые клетки родителей. В ходе реализации наследственной информации в процессе онтогенеза у организма формируются видовые и индивидуальные морфологические, физиологические и биохимические свойства, иными словами - фенотип. Ведущая роль в формировании фенотипа принадлежит наследственной информации , заключенной в генотипе организма. При этом простые признаки развиваются как результат определенного типа взаимодействия соответствующих аллельных генов.

Наряду с этим результат реализации наследственной программы, заключенной в генотипе особи, в значительной мере зависит от условий, в которых осуществляется этот процесс. Факторы внешней по отношению к генотипу среды могут способствовать или препятствовать фенотипическому проявлению генетической информации, усиливать или ослаблять степень такого проявления

Совокупность внутриорганизменных факторов, влияющих на реализацию наследственной про­граммы, обозначают как среду 1-го порядка . Особенно большое влияние на функцию генотипа факторы этой среды оказывают в период активных формообразовательных процессов, прежде всего в эмбриогенезе. С другой стороны, выделяют понятие окружающей среды, или среды 2-го порядка , как совокупности внешних по отношению к организму факторов.

Критические периоды : зигота, имплантация, роды.

Периоды наибольшей чувствительности к повреждающему действию разнообразных факторов получили название критических, а повреждающие факторы - тератогенных

Причиной нарушения развития зачатка является большая чувствительность его в данный момент к действию патогенного фактора, чем у других органов.

П.Г. Светлов установил два критических периода в развитии плацентарных млекопитающих. Первый из них совпадает с процессом имплантации зародыша, второй - с формированием плаценты. Имплантация приходится на первую фазу гаструляции, у человека - на конец 1-й -начало 2-й недели. Второй критический период продолжается с 3-й по 6-ю неделю. По другим источникам, он включает в себя также 7-ю и 8-ю недели. В это время идут процессы нейруляции и начальные этапы органогенеза.

Действие тератогенных факторов во время эмбрионального (с 3 до 8 нед) периода может привести к врожденным уродствам. Чем раньше возникает повреждение, тем грубее бывают пороки.

Факторы, оказывающее поврежденное воздействие, не всегда представляют собой чужеродные для организма вещества или действия. Это могут быть и закономерные действия среды, обеспечивающие обычное нормальное развитие но в других концентрациях с другой силой, в другое время (кислород, питание, температуру, соседние клетки, гормоны, индукторы, давление, растяжение, электрический ток и проникающее излучение).

55Постнатальный (постэмбриональный) онтогенез начинается с момента рождения или выхода организма из яйцевых оболочек и продолжается вплоть до смерти живого организма. Этот период сопровождается ростом. Он может быть ограничен определенным сроком или длиться в течение всей жизни.

Различают два основных типа постэмбрионального развития:

Прямое развитие;

Развитие с превращением или метаморфозом.

В случае прямого развития молодая особь мало, чем отличается от взрослого организма и ведет тот же образ жизни, что и взрослые (наземные позвоночные).

Постнатальный период онтогенеза подразделяют на одиннадцать периодов: 1-й - 10-й день - новорожденные; 10-й день - 1 год - грудной возраст; 1-3 года - раннее детство; 4-7 лет - первое детство; 8-12 лет - второе детство; 13-16 лет - подростковый период; 17-21 год - юношеский возраст; 22-35 лет - первый зрелый возраст; 36-60 лет - второй зрелый возраст; 61-74 года- пожилой возраст; с 75 лет - старческий возраст, после 90 лет - долгожители. Завершается онтогенез естественной смертью.

При развитии с метаморфозом из яйца появляется личинка, порой внешне совершенно не похожая и даже отличающаяся по ряду анатомических признаков от взрослой особи. Часто личинка ведет иной образ жизни по сравнению с взрослыми организмами (бабочки и их личинки гусеницы). Она питается, растет и на определенном этапе превращается во взрослую особь, этот процесс сопровождается весьма глубокими морфологическими и физиологическими преобразованиями. В большинстве случаев организмы не способны размножаться на личиночной стадии. Аксолотли - личинки хвостатых земноводных амбистом - способны размножаться, при этом дальнейший метаморфоз может и не осуществляться вовсе. Способность организмов размножаться на личиночной стадии называется неотенией.

Роль эндокринных желез в регуляции жизнедеятельности организма в постнатальном периоде очень велика. Важен гормон соматропин, выделяемый гипофизом с момента рождения до подросткового периода. Гормон щитовидной железы - тироксин - играет очень большую роль на протяжении всего периода роста. С подросткового возраста рост контролируется стероидными гормонами надпочечников и гонад. Из факторов среды наибольшее значение имеют питание, время года, психологические воздействия.

Иммунология беременности – сложнейшая вещь. Около 60 лет назад Питер Медавар открыл парадокс уклонения полуаллогенного плода от материнской иммунологической реакции.

Для его объяснения он предложил три гипотезы:

  1. — анатомическое разделение матери и плода;
  2. — антигенную незрелость плода;
  3. — иммунологическую инертность (толерантность) матери.

В последние годы стало очевидным, что мать и ее плод иммунологически распознают друг друга, и в большинстве случаев возникает толерантность. Более того, а материнский иммунный ответ во время беременности отличается по качеству, беременность не приводит к полному подавлению иммунитета матери.

Ясно, что рост и развитие полуаллогенного зародыша у иммунологически компетентной матери зависят от того, как беременность изменяет механизмы иммунорегуляции. Исторически внимание было направлено только к матери, но в настоящее время известно, что плоды млекопитающих способны внутриутробно формировать иммунный ответ. Взаимосвязь между иммунными системами плода и матери сложна и является областью исследований.

Врожденный и приобретенный иммунитет

Иммунные системы млекопитающих (включая человека) формируют два фундаментальных ответа: ранний (врожденный) и более поздний, специфичный и выраженный приобретенный ответ.

Врожденный ответ иммунной системы — первая линия обороны. Его обеспечивают поверхностные барьеры (иммунитет слизистых оболочек), слюна, слезы, секрет полости носа, пот, макрофаги крови и тканей, натуральные киллеры (НК), эндотелиальные клетки, полиморфноядерные нейтрофилы, система комплемента, дендритные клетки и нормальная микрофлора. Приобретенный иммунитет включает клеточно-опосредованный (Т-лимфоциты) и гуморальный (антитела) ответ. Активация Т- и в дальнейшем В-лимфоцитов важна для развития долговременной иммунологической памяти.

Врожденные иммунные клетки обладают эволюционно сформированными механизмами, которые признают чужеродное происхождение антигена и в течение нескольких часов вырабатывают преходящую защиту, при этом необходимости в молекулах главного комплекса гистосовместимости нет. Взаимодействие эпителиальных клеток с антигенами вызывает выработку цито- и хемокинов, притяжение макрофагов, дендритных клеток и НК. Макрофаги и нейтрофилы захватывают микроорганизм, подвергают его лизису и синтезируют цитокины. НК играют ключевую роль в разрушении клеток, пораженных вирусом. Пораженные эпителиальные клетки приводят к активации комплемента. Компоненты комплемента способны нейтрализовать микроорганизмы посредством «пробивания» отверстий в их мембранах и опсонизации, ускоряющей их фагоцитоз. Компоненты комплемента также способствуют выработке клеток воспаления. Цитокины, выделяемые иммунными клетками, активируют сосудистые эндотелиальные клетки, повышая проницаемость сосудов, и способствуют пенетрации иммунных эффекторных клеток в ткани.

Формирование связи между врожденным и приобретенным иммунным ответом происходит во время представления антигена. Чужеродные белки подвергаются фагоцитозу, внутриклеточной обработке и затем экспрессируются на клеточной поверхности, связанной с главным комплексом гистосовместимости II. Презентирующие клетки обеспечивают формирование решающих вторичных сигналов (через молекулы на поверхности клеток) для соответствующей активации Т-клеток. Наиболее эффективными антигенпрезентирующими клетками считаются дендритные клетки.

Дендритные клетки играют ключевую роль в изменении приобретенного иммунного ответа. Незрелые клетки захватывают антигены, переносят к лимфоузлам и представляют CD4+ Т-лимфоцитам. В активированных Т-лимфоцитах развиваются поверхностные рецепторы для специфичных чужеродных антигенов, и Т-клетки претерпевают клонированную пролиферацию. Цитотоксические (активированные) Т-лимфоциты могут прямо убивать клетки-мишени, экспрессируя вирусные антигены вместе с главным комплексом гистосовместимости I. В отличие от антигенов, представленных в контексте с главным комплексом гистосовместимости II, часть всех клеточных белков экспрессируется на клеточной поверхности всех нормальных клеток в контексте с главным комплексом гистосовместимости I. С помощью этого механизма иммунная система может определять, синтезирует ли клетка самостоятельные белки или изменяется (например, вирусом) для синтеза чужеродных белков.

После активации CD4+ Т-лимфоциты могут формировать иммунный ответ посредством секреции белков (цитокинов), активирующих окружающие клетки. С помощью секреции g-интерферона и ИЛ-2 CD4+ Т-лимфоциты вызывают развитие клеточного иммунного ответа через CD8+ киллерные Т-клетки. Посредством секреции ИЛ-4 и ИЛ-5 CD4+ Т-лимфоциты помогают В-лимфоцитам пролиферировать и дифференцироваться для синтеза иммуноглобулинов (антител). В-лимфоциты, подвергшиеся действию антигена, в первый раз синтезируют IgM. Поскольку аффинность (антитела) повышается, В-лимфоциты претерпевают генетическое перераспределение и могут синтезировать различные антитела. Наиболее специфичной считают подгруппу IgG: они проникают через плаценту и накапливаются у плода.

Развитие иммунитета плода

Врожденные иммунные эффекторные клетки образуются из гемопоэтических клеток-предшественниц, присутствующих в кровяных островках желточного мешка. К 8-й неделе развития эмбриона их источником становится печень плода, а к 20-й неделе эту функцию выполняет его костный мозг.

Макрофагоподобные клетки происходят из желточного мешка на сроке гестации около 4 нед. К 16-й неделе плод имеет то же количество циркулирующих макрофагов, что и взрослый человек, но они менее функциональны. Количество тканевых макрофагов у плода меньше. Незрелые гранулоциты можно обнаружить в селезенке и печени плода к 8-й. НК появляются в печени с 8-й по 13-ю неделю, а комплемент — к 8-й неделе. ИЛ-1, ИЛ-3, ИЛ-5, ИЛ-7 и ИЛ-9 обнаруживают в крови плода на 18-й неделе гестации. Комплемент матери не проникает через плаценту. Система комплемента продолжает созревать после родов, и титр комплемента, обнаруживаемый у взрослых, у ребенка формируется к окончанию первого года жизни. Кожа — один из основных врожденных барьеров — завершает свое развитие на 2-й неделе после рождения.

Клеточный компонент приобретенного иммунитета — Т-лимфоциты образуются из гемопоэтических клеток-предшественниц, которые можно обнаружить в кровяных островках желточного мешка на 8-й неделе гестации. Для дифференцировки в активированные Т-лимфоциты они должны попасть в щитовидную железу- относительно крупный орган плода, единственной функцией которого считают «обучение» и развитие Т-лимфоцитов. После созревания Т-клетки превращаются в CD4- или CD8-лимфоциты (согласно экспрессируемым поверхностным рецепторам). К 16-й неделе тимус содержит Т-лимфоциты в таком же соотношении, как и у взрослых. У новорожденного соотношение CD4 и CD8 Т-лимфоцитов соответствует таковому у взрослых, но у CD4 Т-клетки плода менее эффективно продуцируют g-интерферон.

В-лимфоциты плода впервые обнаруживают в печени на 8-й неделе гестации, и в течение II триместра их продукция происходит главным образом в костном мозге. В-лимфоциты плода в течение II триместра секретируют IgG или IgA, а IgM не секретируются до III триместра. Концентрация IgM в пуповинной крови, превышающая 20 мг/дл, указывает на внутриутробную инфекцию. IgG матери проходят через плаценту уже в конце I триместра, но эффективность транспорта до 30-й недели низкая. Статистически значимый пассивный иммунитет передается плоду таким же образом, и поэтому недоношенные новорожденные не так хорошо защищены материнскими антителами.IgM вследствие их большего размера неспособны проникать через плаценту. Иммуноглобулины IgA, IgD и IgE — материнские, но плод может синтезировать собственные IgA и IgM.

Физиологически новорожденные имеют большее количество нейтрофилов и лимфоцитов. Содержание нейтрофилов снижается к первой неделе жизни, а количество лимфоцитов продолжает расти.Абсолютное количество лимфоцитов у новорожденных выше, чем у взрослых.

Иммунология взаимодействия в системе «мать-плод»

Беременность представляет особую иммунологическую проблему. Эмбрион должен имплантироваться в мииометрии, что позволяит ему получить доступ к материнскому кровообращению для питания и обмена газов. Удержание в материнской матке плода, отличающегося по антигенному составу, в акушерстве имеет первичное значение. Общую картину иммунорегуляции системы «мать-плод» изучают до настоящего времени, но ниже приведено краткое изложение современных знаний.

Первичным местом модуляции материнского ответа в иммунологии беременности служат матка, регионарные лимфоузлы и плацента.НК-опосредованное воспаление требуется для связывания и проникновения оплодотворенной яйцеклетки в стенку матки и раннего развития плаценты. Большое количество супрессорных Т-лимфоцитов, молекул, инактивирующих ранее активированные материнские лимфоциты (CTLA4), и отсутствие В-лимфоцитов обеспечивают необходимое состояние иммунологического покоя и способствуют успешному развитию беременности. Плацента и плодовые оболочки — ключевой барьер в защите растущего плода от микроогранизмов и токсинов, циркулирующих в крови матери. Синцитиотрофобласт, составляющий в плаценте клеточный барьер между кровью плода и матери, не экспрессирует молекулы главного комплекса гистосовместимости I и II. Более глубокие клетки трофобласта не экспрессируют главного комплекса гистосовместимости II. Это позволяет защитить плод от внедрения микроогранизмов и в то же время предотвращает его разрушение.

HLA-G подавляет приобретенные и врожденные иммунные реакции в плаценте и способствует выделению противовоспалительных цитокинов, таких как ИЛ-10. В крови беременных обнаружены растворимые формы HLA-G. Считают, что HLA-G действуеют через подавление активности НК матки, разрушающих клетки, испытывающие недостаток экспрессии главного комплекса гистосовместимости I.

Иммунологическая система матери во время беременности остается интактной. Во время роста плода мать должна быть способна защитить его и себя от инфекции и чужеродных антигенов. Неспецифические (врожденные)механизмы иммунологической системы (включая фагоцитоз и воспалительный ответ) во время беременности не нарушаются. Специфические (приобретенные) механизмы иммунного ответа (гуморальные и клеточные) также существенно не изменяются. У женщин с пересаженными почками частота отторжения органа во время беременности не изменяется. Количество лейкоцитов также не подвержено статистически значимым изменениям. Относительное количество В- и Т-лимфоцитов остается прежним. То же касается концентрации иммуноглобулинов и реакции на введение вакцин во время беременности.

Основное иммунологическое заболевание, связанное с беременностью, — гемолитическая болезнь новорожденного. Несовместимость по резус-фактору — самое важное из заболевани, связанных с иммунологией беременности.

Гемолитическая болезнь, вторичная по отношению к сенсибилизации, не связанной с резус-фактором, и разрушение лимфоцитов или тромбоцитов, вторичное по отношению к сенсибилизации к специфичным поверхностным антигенам, имеют одинаковый патогенез. Плодовые клеточные антигены поступают в материнский кровоток при рождении и инициируют развитие иммунного ответа. Реакция на эти чужеродные антигены (в первую очередь, на резус-фактор) приводит к возникновению гуморального ответа. Сначала можно определить лишь слабый IgM-ответ. При следующей беременности иммунная система матери развивает ответ, и плазменные клетки памяти секретируют высокоспецифичные IgG. Эти антитела проходят через плаценту и присоединяются к эритроцитам плода, несущим резус-фактор, в результате чего развивается гемолиз и происходит разрушение эритроцитов в селезенке плода, что приводит к выраженной и водянке плода.

Хотя резус-антиген (Rh) — самая важная причина развития анемии у плода, связанная с аллоиммунизацией, другие антигены также участвуют в ее возникновении. Материнский IgG против антигена Келла подавляет эритропоэз в костном мозге плода. АВ0-несовместимость не приводит к развитию статистически значимого иммунного ответа матери на антигены плода. Таким образом, важно учитывать происхождение антигенов, но причина, по которой некоторые из них становятся потенциально патогенными, изучена недостаточно.

Статью подготовил и отредактировал: врач-хирург

Функциональная система мать - плод

От плода в различные периоды внутриутробного развития исходят многочисленные сигналы, посылаемые через различные системы его организма, которые воспринимаются соответствующими системами матери и под влиянием которых изменяется деятельность многих органов и функциональных систем материнского организма.

Вся деятельность организма женщины во время беременности должна быть направлена на максимальное обеспечение нормального развития плода и поддержание необходимых условий, обеспечивающих развитие плода по заданному генетическому плану.

Ведущее значение в осуществлении восприятий импульсов, поступающих в материнский организм от плода, принадлежит нервной системе; При беременности нервные окончания матки (рецепторы) первыми начинают реагировать на многочисленные раздражения; поступающие от растущего плодного яйца.

Наибольшие изменения во время беременности претерпевает центральная нервная система (ЦНС). Начиная со второй половины беременности происходит прогрессирующее усиление тормозного процесса в Коре головного мозга, которое достигает своего максимума к моменту родов

При появлении различных стрессовых ситуаций (страх, волнения, сильные переживания и пр.) в ЦНС беременной могут возникать другие очаги стойких возбуждений, что ослабляет действие доминанты беременности. А это в свою очередь нередко приводит к патологическому течению беременности и нарушениям развития плода. Именно поэтому всем беременным женщинам необходимо по возможности создавать оптимальные условия психического покоя как на работе, так и в домашних условиях.

Наряду с изменениями в ЦНС большие изменения во время беременности происходят в эндокринном аппарате женщины.

В течение первых 4 мес беременности в яичнике функционирует желтое тело, которое вырабатывает большое количество прогестерона, а также эстрогенов. Прогестерон способствует накоплению в децидуальной оболочке необходимых питательных веществ, ферментов и других важных веществ, необходимых для правильного развития эмбриона и плода. Кроме того, прогестерон расслабляет матку и тем самым предотвращает нежелательное воздействие на нее сокращающих веществ. После 4 мес в связи с обратным развитием желтого тела задача продукции прогестерона переходит к плаценте.

Большое значение в осуществление физиологических взаимоотношение системы мать - плод имеют изменения обмена веществ, наблюдаемые при беременности. Не существует ни одного вида обмена веществ, который бы в той или иной мере не изменялся во время беременности. Изменения белкового обмена характеризуются накоплением в организме беременной белковых веществ, которые являются пластическим материалом для построения тканей и органов плода. Накопление белковых веществ в материнском организме необходимо в основном для роста и развития матки и молочных желез - органов, которые во время беременности достигают наибольшего развития.

Значительным изменениям подвергается и обмен жиров. Отмечается повышенное отложение жира на бедрах, животе, в области молочных желез. В крови беременных отмечается увеличение концентрации нейтрального жира и холестерина. В крови плода липидов содержится в 1½-3 раза меньше, чем в крови матери. Накопление жиров в организме матери и плода необходимо для создания запасов энергии. Расход энергии особенно велик в родах.

Существенные изменения происходят и в обмене углеводов. Углеводы (в основном в виде гликогена) в повышенных количествах откладываются в печени матери и плода, в плаценте, в матке. Из организма матери углеводы (в основном в виде глюкозы) переходят к плоду. Глюкоза необходима плоду прежде всего для поддержания процессов так называемого анаэробного гликолиза - специфического процесса существования плода.

Существенные изменения происходят в водном и минеральном обмене во время беременности. Беременность сопровождается выраженной задержкой жидкости в организме женщины.

Повышенное количество жидкости жизненно необходимо плоду. Водная среда играет важнейшую роль в трансплацентарном переходе всех питательных веществ от матери к плоду и в выведении из организма плода продуктов обмена веществ. Вода необходима для образования амниотической жидкости. Большое количество воды содержится в организме плода и в плаценте.

Значительные изменения претерпевает электролитный обмен при беременности. В процессе развития плода возрастают его потребности в солях кальция, калия, фосфора, магния и железа. Соли кальция и фосфора необходимы плоду для построения скелета и других тканей. При дефиците этих солей в материнском организме у беременной начинают расходоваться депо этих соединении, что проявляется разрушением скелета и зубов. Соли фосфора, крометого, необходимы для построения нервной системы плода.

Во время беременности расходуется значительное количество железа, что связано с процессами синтеза гемоглобина у плода. Уменьшение содержания солей железа в материнском организме сопровождается развитием во время беременности железодефицитной анемии.

Большое значение для установления правильных взаимоотношений системы мать - плод имеет обмен витаминов. Витамины необходимы для физиологического течения беременности, правильного роста и развития плода, подготовки к родам и для дальнейшего развития новорожденного. Во время беременности средняя суточная потребность почти во всех витаминах возрастает в 2 раза и более. Поэтому для поддержания витаминного баланса на должном уровне во время беременности необходимо обеспечить повышенное поступление витаминов с пищей, а также в виде лечебных препаратов.

При беременности повышается нагрузка на все органы и системы материнского организма. Происходят выраженные сдвиги со стороны дыхательной, сердечнососудистой, пищеварительной и выделительной системы материнского организма. Эти изменения имеют физиологический характер и направлены на удовлетворение растущих потребностей плода.

Начиная с первого триместра беременности наблюдается увеличение минутного объема дыхания. А это в свою очередь обусловливает лучшее снабжение плода кислородом.

Существенным физиологическим изменениям подвергается и функция сердечнососудистой системы во время беременности. Начиная с первого триместра происходит заметное увеличение объема циркулирующей крови

Эти изменения сердечной деятельности беременной обеспечивают правильное функционирование маточно-плацентарного кровообращения и потребности растущего плода в кислороде и необходимых питательных веществах.

Во время беременности наблюдаются многообразные изменения со стороны пищеварительной системы, обеспечивающей непрерывное поступление в организм плода необходимых ему веществ.

Это касается прежде всего печени. Нормально развивающаяся беременность предъявляет повышенные требования к этому органу, поскольку растущий плод нуждается во все возрастающем количестве питательных веществ. В то же время от плода к матери поступают продукты его обмена, которые выводятся затем через материнский организм

Определенное напряжение во время беременности испытывает выделительная система матери. Снижается тонус мочевыводящих путей, возрастает емкость мочевого пузыря, что связано с воздействием прогестерона желтого тела, а затем и плаценты. Изменяется и функциональная активность почек, отмечается возрастание клубочковой фильтрации на 40-50% по сравнению с таковой у небеременных женщин. Усиленная функция почек способствует повышенному выделению с мочой продуктов обмена не только матери, но и плода.

Особого внимания во время беременности заслуживает иммунная система, поскольку возникшие изменения способствуют удержанию в матке гомотрансплантата (плод). Современными исследованиями установлено, что антигенная активность плода возникает постепенно.

Установлено, что все иммунные системы материнского организма находятся в состоянии некоторого торможения.

Иммунологические взаимоотношения между организмами плода и матери достигают такой выраженности, что зрелый и доношенный плод начинает изгоняться из матки в результате развития маточных сокращений.

До настоящего времени мы в основном рассматривали изменения, которые возникают в организме матери при беременности и которые в той или иной степени оказывают свое воздействие на плод.


^ Иммунологические механизмы взаимоотношений мать-плод

Сохранение беременности осуществляется за счет антигенной незрелости плода, защитных (протективных) свойств матки, отсутствия общей сосудистой системы матери и плода и повышения продукции глюкокортикостероидов для супрессии иммунного ответа матери.

Иммунологические конфликты во многих случаях служат основой патологии взаимоотношений мать-плод. Плод по существу является своеобразным аллотрансплантатом. Причины того, что в одних случаях беременность развивается нормально, а в других возникают иммунологически обусловленные осложнения, разнообразны. Многочисленные специфические и неспецифические факторы обеспечивают выживаемость плода, несмотря на его антигенную несовместимость. К ним относятся:

Особая организация пограничных между матерью и плодом тканей (трофобласт, децидуальная оболочка);

Защитное влияние антител, вырабатываемых против специфических антигенов плода;

Блокирующее действие иммунных комплексов антиген+антитело на плаценте;

Общее супрессивное влияние на иммунные клетки плацентарных белковых и стероидных гормонов, возникших при беременности.

Супрессивное действие лимфоцитов плода;

Блокирующие антитела у беременных против HLA-DR антигенов плода.

Нормальное течение беременности обеспечивается определённым состоянием иммунной системы, при котором плод развивается нормально под влиянием изоантител, Т-лимфоцитов и натуральных киллеров, привлекаемых в плаценту и выделяющих цитокины, стимулирующие рост и дифференцировку тканей плода. В этом заключается целесообразность несовместимости между матерью и плодом. Сдвиги в этой иммунологической сети, индуцированные различными факторами, могут привести к развитию патологии беременности. Причиной этого могут быть генетическая предрасположенность, обусловливающая особые варианты несовместимости (резус-антигены) и др. Некоторая степень иммунодепрессии при беременности, предохраняющая плод от гибели, обеспечивается гормональными и другими неспецифическими факторами. Целый ряд различных иммунологических показателей в течении беременности изменены (субпопуляции клеток, иммуноглобулины, реакция на антигены и аллергены). Еще более значительные изменения иммунореактивности выявлены при различной патологии беременности. При позднем токсикозе беременных обнаружена сенсибилизация лейкоцитов беременных к антигенам плода и плодных оболочек. Спонтанные первичные выкидыши и гибель плода могут обусловливаться наличием антифосфолипидных антител. Присутствие этих антител может сопровождаться тромбозами, тромбоцитопенией и другими признаками аутоиммунной реакции. Изучение уровня ЦИК при позних токсикозах показало, что они могут явиться причиной иммунокомплексных поражений органов и тканей (почки - нефропатия, эклампсия, печень, сосуды, кожа).

Резус-конфликт , лежащий в основе гемолитической болезни новорождённых, является другим примером иммунопатологии беременности. Основой этого конфликта служит наличие у плода Rh (D) антигена и отсутствие его у матери. Образующиеся при этом в организме матери неполные IgG-антитела могут проникать через плаценту и вызывать разрушение эритроцитов плода. Методом выявления антирезусных IgG-антител является непрямая проба Кумбса.

Непрямая проба Кумбса - непрямой антиглобулиновый тест (обнаруживает неполные антитела) позволяет выявить атипичные антитела в крови, в том числе аллоантитела, к чужим антигенам эритроцитов. Свое название - непрямая - получила вследствие того, что реакция протекает в два этапа. Первоначально сыворотка крови больного, содержащая неполные антитела, взаимодействует с добавленным корпускулярным антиген-диагностикумом без видимых проявлений. На втором этапе внесенная антиглобулиновая сыворотка взаимодействует с неполными антителами, адсорбированными на антигене, с появлением видимого осадка. Переливание гомологичных (аллогенных) эритроцитов или беременность резус-отрицательной матери Rh (-) резус положительным плодом Rh (+) - наиболее частые причины образования этих антиэритроцитарных антител.

Таким образом, значимая роль иммунологических реакций в патологии репродукции свидетельствует о целесообразности изучения показателей иммунной системы и проведения таким пациентам иммуномодулирующей терапии.
^ Задания для заключительного контроля знаний
11. Укажите основные причины неэффективности трансплантации костного мозга:

A) Болезнь "трансплантат против хозяина"

B) Отторжение трансплантату

C) Рецидив злокачественной опухоли

D) Инфекционные осложнения

E) Все ответы верны
12. Что такое аутологическая трансплантация?

A) Трансплантация между двумя генетически идентичными лицами

B) Трансплантация, при которой донором и реципиентом является одно и то же лицо

C) Трансплантация между генетически неидентичными лицами

D) Трансплантация между двумя разными биологическими видами

E) Все ответы верны
13. Что такое алогенетическая гетерологическая трансплантация?

A) Трансплантация, при которой донор и реципиент одно лицо

B) Трансплантация между генетически разными лицами одного вида

C) Трансплантация между существами разных видов

D) Трансплантация между двумя генетически идентичными лицами

E) Все ответы верны
14. Что такое трансплантация?

A) Это процесс, при котором клетки, ткани или органы берут у одного лица и перемещают к другому или на другое место тому же лицу

B) Это процесс хирургического перемещения тканей, органов от одного человека к другому

C) Это процесс обмена тканями между субъектами популяции

D) Это процесс, который отображает сущность хирургических манипуляций

E) Это процесс, при котором от одного человека берут или ткани, или органы и перемещают к другой или на другое место тому же лицу
15. Что такое болезнь "трансплантат против хозяина"?

A) Болезнь, которая возникла в результате активации зрелых Т-клеток реципиента при введении ему клеток от донора, отличных от его собственных по HLA-генотипу

B) Болезнь, которая передается трансмиссивным путем

C) Реакция на введение анатоксину

D) Болезнь, которая возникает у больных муковисцидозом после применения амброксола

E) Все ответы верны
16. Укажите этапы приживлення костного мозга:

A) Первичное приживление

B) Увеличение количества клеток

C) Дозревание

D) Все, кроме С

E) A, B, C
17. После трансплантации костного мозга первой возобновляется:

A) Эритроидная система

B) Лимфоидная система

C) Гранулоцитарная система

D) Возобновление всех систем происходит одновременно

E) Эритроидная и гранулоцитарная возобновляются одновременно первые
18. Реципиентам костного мозга антибиотикотерапия должна начинаться при наличии:

A) Лихорадки

B) Признаков поражения центральной нервной системы

C) Катаральных проявлений

D) Ни одно из приведенных состояний не требует проведения антибиотикотерапии

E) А, В и С
19. В течение позднего периода после трансплантации костного мозга к типичным проявлениям инфекционных осложнений не относится:

B) Инфекции кожи, особенно вызванные вирусом ветреной оспы, опоясывающего лишая

D) Бактериальная пневмония

E) Все ответы верны
20. В течение промежуточного периода после трансплантации костного мозга типичными проявлениями инфекционных осложнений является:

A) Интерстициальная пневмония

B) Инфекции кожи

C) Инфекции центральной нервной системы

D) Инфекции желудочно-кишечного тракта

E) Все ответы верны
21. Типичными инфекционными осложнениями в раннем периоде после трансплантации костного мозга является:

A) Бактериемия

B) Грибковые инфекции

C) Реактивация герпетической инфекции

D) Все вышеупомянутые верные

E) Все вышеупомянутые неверные
22. Для определения степени близости генотипа между мужем и женой при бесплодном браке первоочередно используют:

A) Смешанную лейкоцитарную реакцию

B) Определение группы крови

C) Пробу Кумбса

D) Исследование ДНК
23. Iмуноглобулiн какого класса преимущественно образуется в слизистых оболочках?

В) Секреторный IgA

Е) IgЕ
24. Отметьте, какой гуморальный фактор неспецифического иммунитета находится в клетках слизистых оболочек организма:

А) Лизоцимы

В) Пропердiни

С) Нормальные антитела

D) Iнтерлейкiни

Е) Дофамини
25. Отметьте характерную реакцию большинства физиологичных выделений, которые подавляють развитие микроорганизмов:

А) Кислотная

В) Щелочная

С) Нейтральная

D) Кислотный – нейтральная

Е) Кислотный – щелочная
26. Естественно приобретенный пассивный иммунитет - это:

А) иммунитет, который развивается при вакцинации

В) иммунитет, обусловленный введеням анатоксинов

С) иммунитет, обусловленный переносом антитела через плаценту

D) Иммунитет, обусловленный введением сывороток

Е) Иммунитет после перенесенных детских заболеваний.
27. Способностями преодолевать плацентный барьер владеют

D) белки матери

Е) Глобулины
28. У генетически близкого мужчины и женщины

А. чаще встречаются бесплодные браки

В. чаще встречается многоплодная беременность

С. чаще развивается несовместимость матери и плода по системе ABO

D. реже развивается несовместимость матери и плода по системе ABO

Е. Частише возникает резус – конфликт
29. Иммунные процессы во время беременности

А) активизируются

В) подавляются, формируется временная толерантность

С) извращаются

D) характеризуются индукцией цитотоксичности

Е) не изменяются
30. Материнские антитела к HLA-антигенам отца

А) появляются во время беременности

В) исчезают во время беременности

С) сорбируются плацентой

D) разрушаются плодом

Е) не выделяются
31. Резус-конфликт возможен

А) между Rh(+) -матерью и Rh(-) -отцом

В) между Rh(-) - матерью и Rh(+) -отцом

С) между Rh(-) - матерью и Rh(+) -плодом

D) между Rh(+) - матерью и Rh(-) плодом

Е) между Rh(+)-матерью и Rh(+)-плодом
32. Плацента есть:

A) функциональный барьер между тканями матери и плода

B) ткани, формирующие плаценту, содержат ту же генетическую информацию, что и ткани плода

C) плацента непроницаема для иммунокомпетентных клеток матери и плода

D) плацента проницаема для антител матери и плода

E) является органом гуморальной регуляции
33. К появлению антиспермальных антител в организме женщины приводят:

A) Нарушение целостности слизистых оболочек половых путей (химические способы контрацепции, воспаление, коагуляция эрозии шейки матки).

B) Высокие цифры лейкоцитов, в т. ч. лимфоцитов, в сперме.

C) Высокий процент аномальных и “старых” сперматозоидов (при редкой половой жизни).

D) Оральный и анальный секс (попадание спермы в желудочно-кишечный тракт).

E) Попадание большого количества сперматозоидов в брюшную полость (особенности морфологии половых путей, неправильное про ведение методов внутриматочной инсеминации).

F) Попытки экстракорпорального оплодотворения в прошлом (гормональный «удар» по гипоталамо-гипофизарно-яичниковой оси, травма при заборе яйцеклеток).

G) Все вышеназванное

E) Ни один из вышеназванных факторов
34. Укажите, что является основной причиной развития гестозов:

A) функциональные изменения в ЦНС в результате нарушения водно-электролитного баланса

B) нарушение маточно-плацентарного барьера в сочетании со сниженной иммунологической толерантностью

C) сенсибилизация материнского организма антигенами плода

D) деструктивные изменения в печени и почках

E) все вышеперечисленное
35. Иммунологическое бесплодие у женщины может быть обусловлено:

A) несовместимость с партнером по HLA-системе

B) высокая совместимость с партнером по HLA-системе

C) выработка антиспермальных аутоантител у женщины

D) выработка антиспермальных аутоантител у мужчины

E) вторичный иммунодефицит
36. Иммунопатогенез гестозов включает в себя:

A) поступление в организм матери большого количества антигенов плода и выработка антител к ним;

B) фиксация циркулирующих иммунокомплексов в клубочках почек;

C) развитие аллергических реакций на антигены плода;

D) деструктивные процессы в печени;

E) снижение проницаемости маточно-плацентарного барьера;
37. Материнский организм сохраняет беременность посредством выработки следующих иммунорегуляторных агентов:

A) блокирующие антитела

B) глюкокортикостероиды

C) прогестерон

D) Т-супрессоры

E) Т-хелперы

F) HLA-антитела к плоду
38. Иммуносупрессивные агенты, вырабатываемые плацентой и плодом для сохранения беременности, следующие:

A) T-хелперы

B) T-супрессоры

C) B-лимфоциты

D) L-фетопротеин

E) хорионический гонадотропин

F) HLA-антигени плода
39. В основе спонтанных абортов лежат следующие дефекты иммунной системы матери:

A) продукция цитокинов или растворимых иммунных факторов, которым свойственно повреждающее влияние на плод или плаценту;

B) продукция аутоантител к фосфолипидам, которые выполняют функции молекул адгезии и необходимые для сливания клеток в синцитий при формировании синцитиотрофобласта;

C) продукция антиидиотипических антител, которые связывают блокирующие антитела.

D) слабое распознавание HLA-антигенов плода и недостаточная продукция блокировочных антител;

E) суттева разница женщины и мужчины за HLA-антигеним составом
40. Препаратом выбора для лечения обострения тяжелой формы хронической герпес-вирусной инфекции (генитальная форма) у беременной в сроки 15-16 недель является:

A) ацикловир

B) противогерпетический иммуноглобулин

C) валтрекс

D) амиксин

E) виферон
Верные ответы на вопросы: 11 E, 12 B, 13 B, 14 A, 15 A, 16 E, 17 A, 18 E, 19 A, 20 E, 21 D, 22 A, 23 D, 24 A, 25 A, 26 C, 27 C, 28 A, 29 B, 30 C, 31 C, 32 C, 33 G, 34 B, 35 ABCE, 36 ABCD, 37 ABC, 38 BDE, 39 ABCD, 40 B.
^ Технологіна карта проведення практичоного заняття


№ п/п

Этапи

Час

(хв.)


Засоби

Обладнання

Месце

проведения


1

підготовчий

10

Пед.

журнал


Учебова кімната

2

Перевірка і коррекція початкового рівня знань-умінь:

Тестовий контроль,

Устне опитування

35
45


Завдання-тести;

Персональний ком’ютер

Учебова кімната

3

Самостійна курація хворих

45

Хворі

Данні лабораторного та інструментального достідження

палати

4.

Аналіз проведеной курсації

45

Хворі, набор імуно-грам

палати

5.

Робота в імунологічній лабораторії

45

Набор імуно-грам

Лабораторія

6.

Тестовий контроль кінцевого рівня знань

30

Тести

Учебова кімната

5

Підведення ітогів заняття

15

Учебова кімната

Всього

5уч.

годин

1.3. ОСОБЕННОСТИ ИММУНИТЕТА В СИСТЕМЕ МАТЬ - ПЛАЦЕНТА - ПЛОД

Развитие и функция иммунной системы плода и новорожденного имеет характерные черты по сравнению с иммунитетом взрослого человека. Эти особенности основываются как на врожденных генетически обусловленных свойствах иммунитета, так и благодаря ограничению зародыша от внешней среды, осуществляемого плацентой как специфическим барьером.

Иммунобиологические особенности плаценты можно рассматривать с двух позиций: в связи с проблемой взаимоотношений плода и матери (аллотрансплантата плодного яйца в организме женщины) и в связи с иммунологической защитой плода от инфекций в системе мать - плацента - плод. В литературе к настоящему времени накопилось достаточно фактов, характеризующих механизм, обеспечивающий вынашивание плода гемохориальным типом плаценты, при которой зародыш непосредственно соприкасается с кровотоком матери.

Условия, определяющие иммунологическую толерантность матери по отношению к плоду, обусловлены совокупностью ряда особенностей строения и функции плаценты (Цирельников Н. И., 1980). Эти особенности можно разделить следующим образом: с одной стороны иммунологическая реактивность беременных связана с гормональными изменениями в системе мать - плацента - плод. Известно, что ряд белков, синтезирующихся в плаценте, действуют угнетающе на иммунологическую реактивность матери. Так, в частности, трофобласт синтезирует белок-супрессор, тормозящий общий иммунный ответ. Иммуноблокирующими свойствами обладают и другие белки (хорионический гонадотропин, плацентарный лактоген, а также прогестерон. Однако во время беременности общей иммуносупрессии не происходит).

В настоящее время до конца неясно, каким именно из белков плацентарной ткани или крови матери или плода принадлежит функция частичной или общей иммуносупрессии. Подавление функции лимфоцитов беременных осуществляется, в частности, α-фетопротеином, трофобластическим β-гликопротеидом. С другой стороны иммуномаскирующее действие оказывает щеточная кайма синцитиотрофобласта ворсин хориона, которая содержит кислые глюкозаминогликаны, сиаломуцин и другие гликопротеиды, которые своими гликидными компонентами молекулы снижают контакт иммунокомпетентных клеток с антигенными детерминантами плацентарных белков ворсин.

Кроме того, с помощью антисывороток к β 2 -микроглобулину, являющемуся основой антигенов, показано, что количество последних на ворсинках трофобласта резко снижено в отличие от мембран других клеток плаценты. Эта особенность тоже играет важную роль в антигенной толерантности ткани плода и матери.

В плаценте доказано наличие и других типов блокирующих факторов. Так, плацентарные элюаты ингибируют бласттрансформацию лимфоцитов in vitro, в том числе, розеткообразование, антителозависимую цитотоксичность и РБТЛ. Более того, в плацентарной ткани показано наличие специфических антилимфоцитарных антител. Высказана мысль о том, что плацента сорбирует эти антитела из крови матери, препятствуя их проникновению в кровь плода. При этом достигается двойной положительный эффект: устранение возможности сенсибилизации этими антителами лимфоцитов плода и усиление толерантности антигенов плода и матери.

Описан еще один механизм иммунологической депрессии лимфоцитов матери. Лимфоциты, изолированные из пуповины, ингибируют митотическое деление лимфоцитов матери. Это связывают с усиленной активностью супрессорной фракции Т-лимфоцитов ребенка. С их помощью плод защищен от воздействия материнских лимфоцитов, которые могут проникать трансплацентарно.

Часть белков, особенно гонадотропин, включается в процессы блокады антигенного распознавания плода в организме матери. Показано, что этот белок, концентрируясь на трофобластической мембране, слабо иммуногенен и не вызывает иммунологических сдвигов в организме матери. Гонадотропин обладает также функцией блокировать реакцию отторжения со стороны лимфоцитов матери.

Наиболее полно иммунологические механизмы сохранения беременности проанализированы в обзоре М. А. Пальцева с соавт. (1999). Весьма значительная роль в этом процессе отводится большим гранулярным лимфоцитам (БГЛ) и макрофагам децидуальной оболочки. Анализируя антигенные свойства этих клеток, основным маркером которых является CD56, авторы приходят к выводу, что их можно рассматривать как вариант NK клеток, филогенетически более древний, чем циркулирующий в крови.

В настоящее время доказана выраженная синтетическая активность БГЛ, продуцирующих КСФ-1, ГМ КСФ, γ-интерферон, ТФР, ФНО, IL-2, -6, -10 и вероятно другие вещества. Существенное значение имеет и межклеточная кооперация. В том числе имеются данные, что активация NK клеток происходит под влиянием продуцируемого трофобластом интерферона.

В обзоре С. А. Селькова с соавт. (2000) основное значение как в поддержании нормальной беременности, так и в наступлении срочных и преждевременных родов придается макрофагам. При этом профиль продуцируемых ими цитокинов при нормальном и патологическом течении беременности различен (IL-4, -5, -6, -9, -10 и γ-интерферон, ФНО, IL-2, IL-12 соответственно).

Начало сокращения мускулатуры матки связывается с выделением макрофагами IL-1, -6, -8 и простогландинов ПГЕ 2 и ПГЕ 2&aloha; . Установлено, что при нормальной беременности наблюдается постепенное нарастание уровня эстрогенов, достигающее самой высокой концентрации к моменту родов. При переношенной же беременности секреция эстрадиола снижена. Начало родового акта может быть стимулировано изменением уровней эстрогенов и прогестерона. В ранние сроки беременности оно составляет 1:80-1:120, а к 10 мес снижается до 1:1,2-1:1,3. Известно, что большая часть прогестерона образуется материнской частью плаценты. К концу беременности плацента синтезирует прогестерона в 3,5 раза больше, чем в середине беременности.

Синтезируемые плацентой хорионический гонадотропин и плацентарный лактоген также участвуют в регуляции родового акта. К концу беременности количество ХГ снижается, регулируя тем самым повышение эстрадиола в крови беременных. В то же время ХГ сам снижает тонус и сокращения матки.

Имеется определенная связь между перенашиванием и выработкой ряда гормонов плацентой. В схему активации родового акта включается также плацентарный лактоген (синергист хорионического гонадотропина). ПЛ достигает максимальной концентрации к 36 нед. беременности, а к началу родов снижается.

Известную роль в развитии родовой деятельности играет и окситоцин, снижающий мембранный потенциал мышечной клетки и изменяющий соотношение в ней ионов натрия и калия. С удлинением срока беременности активность фермента окситоциназы в плаценте и крови возрастает. Однако к моменту родов при нормальной беременности происходит резкое снижение его уровня, а количество окситоцина при этом увеличивается.

При перенашивании беременности наблюдается увеличение содержания фермента и уменьшение количества окситоцина. Эти процессы ведут к появлению при переношенной беременности процессов анаэробного гликолиза, накоплению ацидоза и энергетического дефицита. Это сопровождается повышением активности лактатдегидрогеназы, окислительных циклофераз и увеличением парциального давления СО 2 . Прослеживается однотипность некоторых обменных реакций перенашиваемости беременности и слабости родовой деятельности, говорящие, что механизмы этих осложнений имеют много общих закономерностей.

При нормальной беременности созревание плаценты ведет к максимальной выраженности трансплацентарной функции к 36 нед беременности, в дальнейшем скорость трансплацентарного обмена начинает снижаться. К концу первой половины беременности фетоплацентарный индекс составляет 3:1, а к моменту родов он увеличивался до 6:1.

Таким образом, иммунологический конфликт организма беременной и плода блокируется каскадом реакций, эффективно замещающих друг друга, и создающих по типу обратной связи невозможность отторжения плода даже при ряде неблагоприятных воздействий на него. Интересно, что основные механизмы толерантности в системе антигенной совместимости мать - плацента - плод, вероятнее всего, включаются и в другие процессы, влияющие на иммунологическую реактивность организма матери и плода.

В. Ф. Мельниковой (1992) показано, что инфекции в плаценте и, в частности вирусные, протекают со сниженными клеточными лимфоцитарными реакциями с переходом процесса во внутриклеточную персистентную форму. Сведений о роли плаценты при инфекции в системе мать-плацента-плод и иммунологических взаимоотношениях между матерью и плодом имеется несколько меньше. Связано это не только с трудностью диагностики инфекционных, особенно вирусных, поражений в ходе беременности, но и со сложностью оценки ряда иммунологических процессов в этом органе в ходе инфекции.

Вместе с тем очевидно, что механизмы воспаления и поддержания беременности имеют много общих черт. В этом отношении, на наш взгляд, можно выделить следующие, установленные исследователями, положения. Мембранные эффекты и энергетическая стимуляция посредством цАМФ, естественно активирует ряд защитных процессов в плаценте. Отмечено участие ЦН в реакциях гуморального иммунитета и аллергических реакциях, их противовоспалительное действие и связь действия ЦН с простогландинами. Одним из моментов регуляции иммунных реакций является, безусловно, воздействие цАМФ на мембранные процессы.

Необходимо остановиться также еще на одном механизме включения каскада системы цАМФ в процессе защиты плаценты и плода от инфекций. Активное функционирование аденилатциклазы и цАМФ в плацентарной ткани ведет к активации протеинкиназы, обладающей функцией фосфорилирования конечных участков, синтезируемых на рибосомах белков. В то же время установлено, что действие интерферона связано с активацией протеинкиназы. Двунитевые вирусные РНК являются своего рода катализатором для неактивной протеинкиназы. Такая активированная под действием двунитевых вирусных РНК протеинкиназа фосфорилирует среди прочих белков фактор инициации белкового синтеза на полисомах eI2, переводя его из активной формы в неактивную, что в свою очередь, блокирует синтез вирусных белков на рибосомах и образование полных вирусных частиц.

Показано, что ингибиция синтеза белков путем блокады фактора инициации более характерна для белков, которые транслируются через выработку информационных РНК in vitro. Установлено также, что этот процесс связан с транскрипцией иРНК на матрице клеточной ДНК. В то же время в плацентарной ткани повышено содержание цАМФ и, следовательно, активируется протеинкиназа.

Таким образом, через механизм цАМФ, возможно, исключается синтез активного противовирусного интерферона. Через плаценту происходит диффузия материнского иммуноглобулина и антител. Эти факты известны со времени обнаружения в пуповинной крови дифтерийного антитоксина в конце 19 века.

В настоящее время известно, что не все классы иммуноглобулинов переходят от матери через плаценту в плод. Показано, что антитела класса Ig M либо совсем не переходят через плацентарный барьер, либо переходят в минимальном количестве.

Иммуноглобулин Е также не проходит сквозь плаценту. В связи с чем пуповинная сыворотка не способна вызывать сенсибилизацию даже в том случае, если кровь матери содержит большие концентрации Ig E.

Внутриклеточная защита плода может осуществляться либо интерфероном, синтезируемым матерью, либо образующимся в плаценте или тканях плода. Интерферон при этом остается неактивным до развития инфекционного процесса в системе мать-плацента-плод. Для плаценты же целесообразно иметь противовирусную защиту, быстро развивающуюся внутриклеточно. В этом отношении каскад аденилатциклазы-цМФ-протеинкиназа-инактивированный фосфорилированием белок инициации вполне удовлетворяет этим требованиям. Доказательством общности этих процессов служат исследования по соотношению цАМФ в клетках, защищенных и не защищенных интерфероном.

Рядом исследователей было показано, что интерферон, будучи введен внутрь клетки специальными манипуляторами, не проявляет своей противовирусной активности. Вещества же, вмешивающиеся в мембранные процессы в клетке (амфотеррин В, ганглиозиды) изменяют активность интерферонного белка. С другой стороны, через 30 мин после обработки клеток интерфероном, в них происходит увеличение уровня цАМФ, который достигает максимума через 2 ч после сорбции интерферона.

Таким образом, наличие в плацентарной ткани высокого уровня цАМФ и протеинкиназы ускоряет создание противовирусной резистентности плацентарных клеток и пролонгирует противовирусный эффект на весь период нахождения РНК-овых компонентов вириона в клетках.

Установлено, что от матери к плоду передается только Ig G, причем уровни его в пуповинной крови у плода достигают концентраций, обнаруживаемых в крови матери. Принцип передачи данного класса иммуноглобулина и целесообразности данного процесса чрезвычайно важен, так как образование собственного Ig G у плода достаточно низко и даже на момент родов не превышает 1% от синтеза его матерью.

Вначале предполагалось, что трансплацентарная передача Ig G свойственна только гемохориальному типу плаценты. Однако, в дальнейшем выяснилось, что она определяется способностью клеток транспортировать пиноцитарные вакуоли с протеинами без их деградации в ходе данного процесса.

Ig M также имеет аналогичный тип передачи, но скорость диффузии вакуоли значительно медленнее, в связи с чем концентрация этого белка у плода низка. Физиологически это частично оправдано снижением проникновения к плоду изогемагглютининов матери, относящихся к этому классу.

Из всех белков плазмы Ig G имеет наибольшую скорость перехода от матери к плоду. Вместе с тем, показано, что прохождение белков через плаценту не зависит от молекулярной массы белка, а является результирующей скорости его сорбции на клетках плаценты, диффузии в плод, обратной диффузии к матери и степени деградации внутриклеточными протеазами.

Механизм транспорта Ig G имеет много общего с проникновением внутрь клетки протеинов высокой массы, а также ДНК и РНК вирусов и токсинов белкового происхождения. Молекула иммуноглобулина связывается с рецептором на синцитиотрофобласте. Расщепленный трипсином Ig G обладает способностью диффундировать сквозь плаценту. Не проходит сквозь плацентарный барьер и полученный с помощью пепсина fab-фрагмент Ig G.

Теория F. W. R. Brambell (1966) с последующими дополнениями, предполагает рецепторный транспорт Ig G через плаценту. Имеется два типа пиноцитарных везикул - крупные (макро-) и мелкие (микропиноцитарные). Показано, что малый тип вакуолей предназначен для селективного связывания молекул белков, в частности Ig G. Такая вакуоль проходит через цитоплазму клетки и выбрасывается из нее с помощью экзоцитоза.

На клетках человеческого трофобласта хориона обнаружили рецепторы для Fc-фрагмента иммуноглобулина. В настоящее время принято подразделять Ig G на несколько подклассов (Ig G 1-4). Их дифференцировка в практических условиях может быть осуществлена по анализу изменения титров антител в нативной сыворотке, после прогревания, после контакта со стафилококком, после обработки цистеином (табл. 1)

Таблица 1 Физико-химические свойства антител, соответствующие различным классам

Класс антител Наличие антител
в нативной сыворотке после прогревания после стафилококка после цистеина
Ig M +++ + +++ +++
Ig G-3 +++ +++ +++
Ig G-1-2 +++ +++ +
Ig G-4 +/- +/-

По данным О. А. Аксенова определение классов и подклассов антител в крови матери и плода позволяет с большой точностью определить время инфицирования и степень активности инфекционного процесса.

Первоначально весьма активно, но краткосрочно идет выработка Ig M, затем с задержкой примерно на 1 нед - Ig G -2 и в меньших титрах Ig G4, наиболее поздно и в небольших титрах происходит выработка Ig G3.

При обострении хронической инфекции наиболее ранняя и значительная реакция происходит со стороны антител Ig G3, несколько позднее, но весьма выражена реакция со стороны Ig Gl-2, реакция со стороны Ig M ранняя, но слабо выраженная, антитела класса Ig G4 реагируют умеренно и поздно.

В плаценте, особенно на базальной мембране трофобласта, обнаружена С3-фракция комплемента, в эндотелии стволовых сосудов выделена С6-фракция. Последняя является одним из конечных продуктов комплемента, приводящих к нарушению проницаемости сосудов и мембран, необходимых для доставки многих белковых субстратов к плоду.

При изучении прохождения сквозь плацентарный барьер различных подклассов Ig G установлено, что подкласс Ig G2 менее проходим через него, в то время как другие подклассы Ig G1, 3, 4 проникают к плоду без изменения концентрации. Это связано с меньшей сорбцией данного подкласса на трофобластических рецепторах.

Интересно, что подкласс Ig G2, по данным Р. В. Петрова (1983), не сорбируется на рецепторах моноцитов и К-клеток. Можно полагать, что в процессе филогенеза система мать-плацента-плод у человека приобрела способность задерживать проникновение к плоду того типа Ig G, которые могут вызвать повреждение развивающегося зародыша. В то же время ряд авторов не подтверждает это положение. По их данным соотношение подклассов IgG в пуповинной и материнской крови одинаково.

Полученные к настоящему времени данные показывают, что в развитии иммунной системы плода наблюдается поэтапное становление клеточного и гуморального иммунитета, как во времени, так и во взаимоотношении между собой. Дифференцировка клеток иммунной системы происходит с 3 по 6 нед внутриутробного развития зародыша. Первые лимфоидные клетки обнаруживаются в фетальной печени на 5 нед, а к 6-7 нед происходит образование тимуса. С 8-9 нед в этом органе наблюдается активный лимфопоэз, независимый от антигенного стимулирования. Дальнейшее развитие тимуса направлено на дифференцировку в нем двух видов лимфоцитов: иммунологически незрелых (имеющих на своей поверхности тимус-антиген) и зрелых, находящихся в мозговом слое органа. В дальнейшем происходит их миграция из тимуса в паракортикальную зону периферических лимфоузлов и периартериальную зону селезенки. Эти клетки обладают иммунологической активностью (типа зрелых Т-клеток). Они осуществляют реакцию "антиген против хозяина" и киллерную функцию против аллогенно или антигенно измененных клеток, появляющихся в организме плода.

Лимфатические узлы выявляются у зародыша на 12 нед развития. В то же время при неосложненной беременности плазматические клетки отсутствуют. Обнаружение их свидетельствует об антигенном стимулировании зародыша, чаще всего инфекционного характера.

Необходимо также остановиться на развитии компонентов системы комплемента, поскольку от нее зависит потенцирование различных иммунологических реакций, в том числе приводящих к разрушению клеток, выходу гистамина и т. д. Так, компонент Clq почти вдвое уменьшает число лимфоцитов, взаимодействующих с антигеном. В то же время он не влияет на клетки, синтезирующие антитела. При увеличении содержания фракции комплемента С1 и низком уровне антителосвязывающих лимфоцитов происходит снижение лимфоцитов супрессоров ГЗТ.

Таким образом, этот компонент комплементарной системы регулирует процесс перехода иммунного ответа с клеточного на гуморальный путь. Фракция С3 комплемента участвует в индукции гуморального ответа, в частности усиливает выработку противовирусных антител.

Еще в начале 70-х годов было показано, что белки системы комплемента матери не проходят через плаценту. Доказан синтез С3 и С4 фракций комплемента фетальной печенью, начиная с 15 нед внутриутробного развития. Несмотря на то, что собственный комплемент зародыша уже в 1 триместре беременности обеспечивает его биологические функции, все же суммарная активность его у плода значительно ниже, чем у матери. Вероятно, его недостаточное количество ведет к снижению клеточного иммунитета плода.

Важным рубежом в становлении иммунных процессов является 20 нед гестации, когда начинается функционирование собственных механизмов иммунитета, в частности начало синтеза собственного Ig M. В то же время в околоплодных водах появляется выраженная антибактериальная активность, обусловленная наличием лизоцима, β-лизина, трансферрина, интерферона и т. п.

Среди исследователей долгое время сохранялось представление, что человеческий зародыш при нормальных условиях не синтезирует собственные иммуноглобулины, а их наличие у плода и новорожденного в течение первых месяцев постнатальной жизни обусловлено трансплацентарной передачей от матери. Это положение полностью совпадало с тем, что в норме у плода не обнаруживаются плазматические клетки, которые появляются лишь через несколько недель после рождения. Однако, они обнаруживаются у плода при инфекционном процессе, в частности при микоплазмозе и сифилисе.

С помощью ИФ и радиоиммунного методов была установлена возможность синтеза Ig M и Ig G иммунокомпетентными клетками при патологических состояниях плода. Синтез Ig M иммунокомпетентными клетками селезенки и тимуса начинается с 12 нед внутриутробного развития зародыша. Выработка Ig G появляется у плода с 12 нед в фетальной печени, селезенке и мезентериальных лимфатических узлах. Увеличение его содержания, начиная с 26 нед объясняется в основном транс плацентарной передачей.

Синтез Ig G выявлен в вилочковой железе и плаценте, начиная с 14 нед Ig A начинает синтезироваться зародышем с 13-14 нед, в основном в кишечнике и обнаруживается в околоплодных водах вплоть до рождения ребенка.

В отдельных работах показана возможность синтеза плодом Ig E при попадании аллергена, преодолевшего плацентарный барьер. Этот иммуноглобулин в основном синтезируется в легких и селезенке.

Синтез плодом собственных иммуноглобулинов, особенно Ig G свидетельствует о функционировании В-клеточной лимфоцитарной системы.

Известно также, что с 12 по 14 нед увеличивается число лимфоцитов с мембранными иммуноглобулинами. На этих клетках имеются рецепторы для комплемента. Все это доказывает, что низкий синтез иммуноглобулинов плодом является результатом меньшей антигенной стимуляции плода. Более того, установлено, что внутриутробно происходит процесс созревания лимфоцитов, независимый от антигенного раздражения.

При дефекте В-клеток отмечается их неспособность к трансформации в плазматические клетки. Во многих случаях антигены различных возбудителей стимулируют дифференцировку В-клеток, но не вызывают инфекционного процесса в организме плода.

Синтез молекулы антитела - энергетически зависимый процесс, поэтому более целесообразно получение плодом от матери готового антитела в виде Ig G. Главным биологическим смыслом передачи антител от матери к плоду является немедленная пассивная защита от заражения патогенными микроорганизмами. Барьерная функция плаценты замедляет распространение инфекционного процесса в системе мать-плацента-плод, поэтому появившиеся через 5-6 дней после инфицирования Ig G успевают проникнуть через плаценту раньше, чем возбудитель.

Клеточная Т-зависимая система иммунитета зародыша выполняет ряд функций, защищая его от инфекций, а также разрушая материнские лимфоциты, способные вызвать реакцию отторжения трансплантата. Установлено, что уже в 1 триместре тимус содержит до 90-95% розеткообразующих клеток - Т-лимфоцитов. Резкое увеличение этих клеток происходит к 11-12 нед беременности, к этому же времени происходит дифференцировка лимфоцитов на хелперы и супрессоры. Их функциональная активность находится на уровне клеток взрослого. Так РБТЛ достаточно выражена уже на 10 нед беременности. Пролиферативная же реакция на митогены (клеточные растворимые и инфекционные антигены) в лимфоцитах печени развивается раньше (на 7-8 нед).

Одной из важных функций Т-лимфоцитов является их киллерная функция, осуществляемая NK- и К-клетками. Показано, что цитотоксическая активность NK-клеток обнаруживается уже на 14-15 нед развития. Кроме того, установлена активация Т-клеток с помощью 5 фракции тимозина. Другим активатором Т-лимфоцитов является IL-2, усиливающий пролиферацию этих клеток.

Рождение ребенка приводит к радикальному изменению его иммунитета. С иммунологической точки зрения - это прекращение действия защитного барьера матери, столкновение ребенка с множеством чужеродных антигенов, включая микробные и вирусные. Вместе с тем исчезает трансплацентарный путь передачи защитных факторов от матери.

Установлено, что активность лейкоцитов новорожденных снижена по сравнению с детьми более старшего возраста. Это связано с низкой миграционной активностью лейкоцитов, обусловленной дефицитом клеточных эстераз, которые включаются в процесс метаболизма сложных мембранных эфиров, необходимых для миграции клетки. При этом отмечается низкая опсонизирующая активность сывороток, которая обусловлена низким содержанием у новорожденного Ig M и комплемента.

В настоящее время установлено, что в течение первых месяцев постнатальной жизни происходит снижение уровня материнского Ig G и постепенное нарастание собственных иммуноглобулинов этого класса. Выявлено повышенное содержание В-лимфоцитов у новорожденных в пуповинной крови по сравнению со взрослыми.

Недостаток синтеза иммуноглобулинов у новорожденных компенсируется клеточными механизмами иммунного ответа. Показано, что Т-лимфоциты новорожденных способны вырабатывать различные лимфокины, включая интерферон, и реагировать на стимуляцию ФГА. Однако, цитотоксичность их резко снижена.

Иммунологические аспекты перинатальных инфекций складываются из особенностей развития ребенка в этот период (контакт его с различными инфекционными возбудителями и антигенами) и постепенно снижающимся материнским иммунитетом. Состояние иммунитета беременной существенно не нарушается. Создается парадоксальный эффект - плод не отторгается как аллотрансплантат, благодаря блокаде клеточного иммунитета по отношению к его тканям. Однако в отношении других антигенов организм матери отвечает обычными иммунными реакциями.

Установлено, что иммунный ответ на HLA-антигены (в том числе отца) возрастает во время беременности и снижается к моменту родов. Активность же NK-клеток в первом триместре наиболее высокая, а затем постепенно снижается. Прогрессирующее возрастание их активности наблюдается при гестозах второй половины беременности.

В настоящее время широко распространена точка зрения, что в патогенезе поздних гестозов основное значение имеет нарушение толерантности аллогенной фенотипической системы. Среди других фактов важную роль отводят усилению киллерной активности лимфоцитов, что может быть связано с различными факторами, в том числе инфекциями.

В. В. Иванова с соавт. (1987) получила достоверную связь между тяжестью гестоза, высоким процентом мертворождений, преждевременных родов и вирусных инфекций в системе мать-плацента-плод. Они делают вывод о роли вирусных инфекций в развитии гестозов, при которых поражение плода не всегда сочетается с манифестной инфекцией матери.

Следует отметить низкие уровни Ig M у плодов и новорожденных и непроницаемость плацентарного барьера для материнских антител этого класса. В то же время они являются определяющими в защите организма. В. В. Ритова и соавт. (1976) считает, что развитию инфекции у плода и новорожденного способствует состояние иммунологической толерантности и дефектность иммунной системы плода в отношении синтеза антител Ig M при инфицировании за 2-4 нед до родов. Авторы полагают, что внутриутробные вирусные инфекции, возникшие в этот период протекают без включения антительного компонента.

Важное значение имеет и то обстоятельство, что Ig A не проходит через плацентарный барьер, а синтез собственного Ig A снижен. Этим объясняют тяжелое течение респираторных и кишечных вирусных инфекций в периоде новорожденности. Необходимо также подчеркнуть и тот факт, что период полураспада иммуноглобулинов составляет для Ig G - 20-24 дня, для Ig A - 5,8 дня, а для Ig M - 4,1 дня. Вполне вероятно, что плоду трансплацентарно передаются не только антитела, но и сигнал для синтеза антител в виде лимфоцитов "памяти".

В настоящее время получены данные и о других защитных механизмах в системе последа. Так показано, что размножение микроорганизмов в амниотической жидкости приводит к повышению уровня липополисахаридов, которые, активируя деятельность фетального трофобласта, приводят к усиленному синтезу ими IL-1, IL-6, IL-8, IL-10, TNF, активно участвуют в развитии воспалительных и иммунных реакций в системе мать-плацента-плод (О. А. Пустота на, Н. И. Бубнова, 1999). Так Е. Paradovska et al. (1996) в эксперименте на органной культуре плаценты и амниотических оболочек показали защитную роль TNF по отношению к инфекциям, вызванным вирусами простого герпеса 1 типа, энцефаломиокардита и везикулярного стоматита.

Важное значение в защите плаценты от биологических возбудителей придается экспрессии антигенов большого комплекса гистосовместимости (HLA 1 типа). Наиболее широко распространенные антигены этой группы - HLA-A, HLA-B, функционально тесно связанные с NK-клетками, на поверхности цитотрофобласта не экспрессированы. В качестве важнейшего антигена этой локализации рассматривают HLA-G, внутриклеточный транспорт которого блокируется вирусом простого герпеса (Schust D. J. et al., 1996).

Начато изучение протективного действия в репродуктивных тканях женщины дефензинов. В работе D. M. Svinarich et al. (1997) показано, что в эндоцервиксе, эндометрии и хорионе может быть обнаружена транскрипция дефензина 5. Среди цитокинов, связанных с длительно текущей генитальной инфекцией, в частности вызванной Chlamydia trachomatis в эксперименте у мышей, S. J. Blander, A. J. Amortegui (1997) важное значение придают IL-5 (основному цитокину, ответственному за эозинофилию), уровень которого повышается через 5 недель после первичной инфекции.

В настоящее время среди факторов противоинфекционной защиты существенное значение придается также интерферону. Интерферон, открытый Isaaks и Lindenmann в 1957 году, как антивирусный фактор, в настоящее время хорошо изучен. Установлено существование целой группы соединений - интерферонов, являющихся низкомолекулярными белками (молекулярная масса от 10 до 150 тыс. дальтон), обладающих свойствами неспецифической защиты клетки от чужеродных синтезов, в частности от размножения в клетках вирусов, хламидий, микоплазм - возбудителей с внутриклеточным характером размножения.

В настоящее время интерфероны относят к интерлейкинам. Известны три типа интерферонов: альфа (α), бета (β) и гамма (γ). Интерферон типа α-кислотостабильный низкомолекулярный белок (масса 10 тыс. Д), основной его функцией является внутриклеточная защита за счет выработки в клетке ряда белков и низкомолекулярных структур, блокирующих на рибосомах синтез de novo белков и ядерный синтез чужеродных нуклеиновых кислот.

Кроме того, α-интерферон стимулирует появление на мембранах группы специфических рецепторов, обладающих защитным действием, путем изменения мембранной проницаемости, а также активации различных клеточных рецепторов, включая рецепторы гистосоместимости.

β-интерферон-кислотолабильный белок (масса 20-40 тыс. Д) один из наименее изученных интерферонов, был впервые получен экспериментально в культурах опухолевых клеток и в настоящее время считается разновидностью β-интерферона, вырабатываемого в организме местно клетками различных органов. В связи с наличием в клетках разных органов большого числа рецепторов для β-интерферона, он практически не выходит в лимфу и кровяное русло, являясь по сути местным интерфероном.

γ-интерферон-кислотолабильный белок (масса 130-150 тыс. Д) представляет собой интерлейкин, в функции которого входит стимуляция ряда других интерлейкинов, усиливающих передачу информации с макрофагов на Т-лимфоциты в процессе стимуляции иммуногенеза. В связи с этим биологические функции этого типа интерферона весьма многообразны, включая антивирусное и антимикробное действие, антионкогенный эффект, антителостимулирующий эффект, действие на клеточный рост и дифференцировку.

В системе мать-плацента-плод интерфероны вырабатываются организмом матери, плодом и последом. Интерфероны, синтезируемые в организме матери имеют свойства, и α, β и γ. Их уровни могут изменяться в зависимости от инфекции, переносимой женщиной во время беременности. Они выполняют защитную функцию. Альфа и бета интерфероны, имеющие низкую молекулярную массу, все же не проникают через неповрежденный плацентарный барьер. Вероятно, это связано с его избирательной проницаемостью для интерферонов, которые являются антагонистами гормона роста. Не исключено, что малый вес плодов, страдающих внутриутробными инфекциями, в какой-то мере обусловлен и тормозящим воздействием интерферона.

В то же время синтез гамма-интерферона в организме матери задержан в связи с его более выраженным по сравнению с α-интерфероном эффектом на Т-киллеры, в том числе их способность усиливать реакцию иммунного отторжения в системе свой - чужой.

Интерфероны синтезируются также клетками плаценты. В ткани плаценты определяются три различных по своим свойствам типа интерферонов: α, γ и особый плацентарный интерферон. Установлено, что присутствие интерферонов в плаценте связано с имеющимся в ней инфекционным процессом, в первую очередь обусловленным вирусами и другими возбудителями, для которых характерно внутриклеточное размножение (микоплазмы, хламидии).

В литературе имеется лишь небольшое число работ, указывающих на наличие интерферона в плаценте. Прежде всего это экспериментальные работы на мышах и крысах, в которых прослежено наличие α-интерферона в различные сроки беременности. Однако, сведения о его роли в барьерной функции органа практически отсутствуют.

В отдельных исследованиях показана способность α-интерферона защитить плод от внутриутробной герпетической инфекции (Zdravkovic M. et al., 1997).